
 
 
  

       
 

Debrecen, 2013 

 

 
TÁMOP- 4.1.2.A/1-11/1-2011-0098  

„Műszaki és gazdasági szakok alapozó matematikai  
ismereteinek e–learning alapú tananyag- és módszertani fejlesztése” 

 
 
 
 
 
 
 

 
 

Lecture Notes for College Discrete 
Mathematics 

 
 

 
Gábor Horváth and Szabolcs Tengely 

 



Contents

1 Introduction 4
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Sums and products . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 The Euclidean algorithm . . . . . . . . . . . . . . . . . . . . . 15
1.4 Numeral systems . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Counting 25
2.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Number of subsets . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Anagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 The number of ordered subsets of a given size . . . . . . . . . 43
2.6 The number of subsets of a given size . . . . . . . . . . . . . 46
2.7 Distributing money . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 Balls from urns . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Proof techniques 66
3.1 Proofs by induction . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Proofs by contradiction . . . . . . . . . . . . . . . . . . . . . . 75
3.3 Constructive proofs . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4 Pigeonhole principle . . . . . . . . . . . . . . . . . . . . . . . 86
3.5 A card trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Pascal’s triangle 93
4.1 Binomial theorem . . . . . . . . . . . . . . . . . . . . . . . . . 96



CONTENTS 3

4.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Recurrence sequences 112
5.1 Examples of recurrence relations . . . . . . . . . . . . . . . . . 112
5.2 Linear recurrence relations of order k . . . . . . . . . . . . . . 117

6 Solutions 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Proof Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4 Pascal’s triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.5 Recurrence sequences . . . . . . . . . . . . . . . . . . . . . . . 194



Chapter 1

Introduction

These lecture notes are based on the class material “College Discrete Mathe-
matics” for students in the Foundation Semester year at University of Debre-
cen, Hungary. The lecture notes are intended to help the students understand
and learn the course material, but they do not substitute participation and
active work on the class.

Discrete mathematics deals with the non-continuous mathematics. This
usually means finite mathematics, but properties of natural numbers are
discussed, as well. The course sets the basis for future mathematical classes,
and is essential to understand those later.

In Chapter 1 we introduce basic mathematical concepts, such as sets,
subsets, sums and products, the Euclidean algorithm and numeral systems.
In Chapter 2 we show different counting arguments. We count the number
of sequences, subsets, permutations, and anagrams. Then we consider the
number of ordered subsets, the number of subsets of a given size. Finally, we
count the number of possibilities to distribute money, and to take out some
balls from an urn.

In Chapter 3 we explain different basic mathematical proof methods, such
as mathematical induction and proof by contradiction. We show how one can
prove theorems in a constructive way, or by using the pigeonhole principle.
At the end of the chapter we use these proof techniques to bring the reader
“behind the curtains” of a mathematical card trick.

In Chapter 4 we consider Pascal’s famous triangle built up from the bi-
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nomial coefficients. We prove several identities related to the triangle, and
use it to show the Binomial theorem. In Chapter 5 recurrence sequences are
discussed. We start by the famous Towers of Hanoi, then work our way up to
more general recurrence sequences and to the explicit formulas determining
them. Finally, in Chapter 6 we give all solutions to the exercises occurring
in the lecture notes.

1.1 Sets

In mathematics a set is a collection of objects that are called elements. Usu-
ally we denote sets by capital letters and elements by small letters. If A is
a set and a is an element of A, then we write a ∈ A. If a is not an element
of A, then we write a /∈ A. Now we deal with the problem how to provide a
set.

• Sets given by enumeration. If we have a set containing certain
elements, then we enclose these elements in braces. For example, if A
is a set containing 1, 2 and 3 we write A = { 1, 2, 3 }. This notation is
difficult to use if the given set has large amount of elements. In this
case we list only some (usually consecutive) elements such that it is
easy to see which are the remaining elements of the set. As an example
let us assume that B is a set containg the integers between 1 and 1000.
Here we write B = { 1, 2, 3, . . . , 1000 }. If C is the set containing the
odd integers between 1 and 99, then we have C = { 1, 3, 5, . . . , 99 }. It
is also possible to provide some families of sets, for example

D1 = {1}, Dk = { 1, 3, . . . , 2k − 1 } .

In this case Dk denotes the set containing the first k positive odd inte-
gers.
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k Dk

1 { 1 }
2 { 1, 3 }
3 { 1, 3, 5 }
4 { 1, 3, 5, 7 }

• Standard sets. There are certain frequently used sets which have
their own symbols. These are the set of natural numbers, the set of
integers, the set of rational numbers, the set of real numbers and the
set of complex numbers.

N = { 1, 2, 3, . . . }, the set of natural numbers.

Z = { . . . ,−2,−1, 0, 1, 2, . . . }, the set of integers.

Q, the set of rational numbers.

R, the set of real numbers.

C, the set of complex numbers.

• Set-builder notation. It is also possible to define sets using the
so-called set-builder notation. As an example consider the set D3 =

{ 1, 3, 5 }, we can define this set in many different ways, e.g.

{ 1, 3, 5 } = { a | (a− 1)(a− 3)(a− 5) = 0 } ,

{ 1, 3, 5 } = { a | a = 2k − 1, k ∈ { 1, 2, 3 } } ,

{ 1, 3, 5 } = { a | 1 ≤ a ≤ 5, and a is odd } .

We can use semicolon instead of the vertical line, as well:

{ 1, 3, 5 } = { a : (a− 1)(a− 3)(a− 5) = 0 } ,

{ 1, 3, 5 } = { a : a = 2k − 1, k ∈ { 1, 2, 3 } } ,

{ 1, 3, 5 } = { a : 1 ≤ a ≤ 5, and a is odd } .

Let us define the set of even natural numbers:

{ 2n | n ∈ N } .
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The set of rational numbers can be given as follows

{ a/b | a, b ∈ Z, b 6= 0 } .

To study some basic properties of sets we give some definitions. First we
introduce the concept of cardinality.

Definition 1.1. A set is called finite if it has finite number of elements. If
a set is not finite it is called infinite.

Now we consider cardinality of finite sets. The cardinality of infinite sets
is more complicated and we will not discuss it.

Definition 1.2. Let A be a finite set. The cardinality of A is the number of
different elements of A. Notation: |A|.

For example, the cardinality of D3 is 3 and the cardinality of the set
{ 1, 2, 3, 6, 7, 8 } is 6.

Definition 1.3. Let A and B be sets. The set B is a subset of A if and only
if every element of B is an element of A. Notation: B ⊆ A.

There is a special set which is a subset of all sets, the so-called empty
set. As the name suggests it is the set which has no element, that is, its
cardinality is 0. The empty set is denoted by ∅.

Definition 1.4. If B ⊆ A and B 6= ∅, B 6= A, then B is a proper subset of
A.

Definition 1.5. Let A and B be sets. The two sets are equal if A ⊆ B and
B ⊆ A.

Now we define some basic operations of sets.

Definition 1.6. Let A and B be sets. The intersection of A and B is the
set {x | x ∈ A and x ∈ B }. Notation: A ∩B.

The so-called Venn diagrams are often useful in case of sets to understand
the situation better. By shading the appropriate region we illustrate the
intersection of A and B.
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A B

Let A = { 1, 2, 3, 4, 5 } and B = { 3, 4, 5, 6, 7 }. The intersection of these two
sets is the set A ∩B = { 3, 4, 5 }.

Definition 1.7. Let A and B be sets. The union of A and B is the set
{x | x ∈ A or x ∈ B }. Notation: A ∪B.

The corresponding Venn diagram is as follows.

A B

Let A = { 1, 2, 3, 4, 5 } and B = { 3, 4, 5, 6, 7 }. The union of these two sets
is the set A ∪ B = { 1, 2, 3, 4, 5, 6, 7 }. It is easy to see that the following
properties hold A ∩ B = B ∩ A and A ∪ B = B ∪ A. It is not true for the
difference of two sets.

Definition 1.8. Let A and B be sets. The difference of A and B is the set
{x | |x ∈ A and x /∈ B }. Notation: A \B.

The Venn diagram of A \B :

A B
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To see the difference between A \B and B \A we draw the Venn diagram of
B \ A as well:

A B

Again, let A = { 1, 2, 3, 4, 5 } and B = { 3, 4, 5, 6, 7 }. Now we have that

A \B = { 1, 2 } ,

B \ A = { 6, 7 } .

Now we introduce the symmetric difference of sets.

Definition 1.9. Let A and B be sets. The symmetric difference of A and
B is the set (A ∪B) \ (A ∩B). Notation: A4B.

The Venn diagram of the symmetric difference of A and B :

A B

We give an example using sets A = { 1, 2, 3, 4, 5 } and B = { 3, 4, 5, 6, 7 }. We
obtain that

A4B = { 1, 2, 6, 7 } .

Finally, we define the complement of a set.

Definition 1.10. Let U be a set (called the universe) and A is a subset of
U. The complement of A consists of elements of U which do not belong to A.

Notation: A.
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The corresponding Venn diagram is as follows.

A

A

U

As an example consider the sets U = {1, 2, 3, 4, 5, 6} and A = {1, 3, 5}. The
complement of A is the set {2, 4, 6}.

Exercise 1.1. LetA = { 3, 4, 6, 7, 8 } , B = { 2, 4, 5, 6, 8 } and C = { 1, 2, 4, 5, 8 }.
What are the elements of the set (A \B) ∪ (C ∩B)?

Exercise 1.2. LetA = { 1, 3, 4, 6, 7 } , B = { 2, 4, 5, 6, 8 } and C = { 1, 3, 4, 5, 8 }.
What are the elements of the set (A ∩B) \ (C ∩B)?

Exercise 1.3. Let A = { 1, 3, 4, 6, 7 } , B = { 2, 4, 6, 8 } and C = { 1, 3, 4, 8 }.
What are the elements of the set (A \B) ∪ (C \B)?

Exercise 1.4. List all elements of the following sets:
(a) { 3k + 1 | k ∈ { 2, 3, 4 } },
(b) { k2 | k ∈ {−1, 0, 1, 2 } },
(c) {u− v | u ∈ { 3, 4, 5 } , v ∈ { 1, 2 } }.

Exercise 1.5. Describe the following sets using set-builder notation.
(a) { 2, 4, 6, 8, 10 },
(b) { 1, 4, 9, 16, 25 },
(c)
{
1, 1

2
, 1
4
, . . . , 1

2k
, . . .

}
,

(d) the set of rational numbers between 1 and 2.

Exercise 1.6. Draw a Venn diagram for the following sets:
(a) (A ∩B) ∪ C,
(b) (A \B) ∪ (A \ C),
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(c) (A ∪B) ∩ C,
(d) (A ∩B) ∪ (B ∩ C) ∪ (A ∩ C),
(e) ((A ∩B) \ C) ∪ ((A ∩ C) \B) ∪ ((B ∩ C) \ A),
(f) (A \B) ∪ (B \ C) ∪ (C \ A).

Exercise 1.7. Provide three sets A,B and C which satisfy the following
cardinality conditions

|A ∩B ∩ C| = 2,

|A ∩B| = |A ∩ C| = |B ∩ C| = 2,

|A| = |B| = |C| = 4.

Exercise 1.8. Provide three sets A,B and C which satisfy the following
cardinality conditions

|A ∩B ∩ C| = 2,

|A ∩B| = 2, |A ∩ C| = 2, |B ∩ C| = 3,

|A| = 4, |B| = 5, |C| = 6.

1.2 Sums and products

In this section we introduce summation notation and product notation which
we will use later on. The special symbol

∑
is used to denote sums. Let us

consider an example
5∑

k=1

k = 1 + 2 + 3 + 4 + 5.

In a more general form
n∑

k=m

k = m+ (m+ 1) + . . .+ (n− 1) + n.

Here m is the lower bound of summation and n is the upper bound of sum-
mation. There are some other possibilities to express the above sum, e.g.∑

m≤k≤n

k,∑
k∈S

k, where S = {m,m+ 1, . . . , n } .
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It is important to note that the variable used in the summation is arbitrary.
That is, the values of the following summations are equal:

3∑
k=1

k2 = 12 + 22 + 32 = 14

and
3∑

m=1

m2 = 12 + 22 + 32 = 14.

Now we write out explicitly some other summations:

(a)

6∑
i=2

(2− i) = (2− 2) + (3− 2) + (4− 2) + (5− 2) + (6− 2) = 10,

(b)
5∑

j=3

2j−2 = 23−2 + 24−2 + 25−2 = 14,

(c) ∑
1≤i,j≤2

ij = (1 · 1) + (1 · 2) + (2 · 1) + (2 · 2) = 9.

Now we deal with products of mathematical expressions. The symbol used
in this case is

∏
. Product notation is very similar to summation notation so

it is straightforward to learn to use. The first example in case of summation
notation was

5∑
k=1

k = 1 + 2 + 3 + 4 + 5.

If we change the
∑

symbol to
∏
, then we obtain

5∏
k=1

k = 1 · 2 · 3 · 4 · 5.

Let us consider the product of integers between m and n, where m < n. We
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can write it in product notation in different forms:
n∏

k=m

k,∏
m≤k≤n

k,∏
k∈S

k, where S = {m,m+ 1, . . . , n } .

It may happen that the sum or product should be evaluated on the empty
set. By definition, in such situations the sum is always 0 and the product is
always 1, e.g. ∑

k∈∅

k = 0,∏
k∈∅

k = 1.

If S and T be two disjoint sets, then∑
k∈S

k +
∑
k∈T

k =
∑

k∈S∪T

k,∏
k∈S

k ·
∏
k∈T

k =
∏

k∈S∪T

k.

Note, that this is true even if S or T is the empty set. (This is the main
reason we define the empty sum to be 0 and the empty product to be 1.)

There is a special notation for the product of positive integers up to n,
that is, when we multiply the elements of

Sn = { k | k is a positive integer, k ≤ n } = { 1, 2, . . . , n } .

The product of the elements of Sn is called n factorial and denoted by n!,
that is,

n! =
∏
k∈Sn

k =
n∏

k=1

k = 1 · 2 · · · · · (n− 1) · n.

We even define 0!, that is, the products of elements of S0:

0! =
∏
k∈S0

k =
∏
k∈∅

k = 1.
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Factorials are always computed before any other operation. For example

2 + 3! = 2 + 1 · 2 · 3 = 2 + 6 = 8,

(2 + 3)! = 5! = 1 · 2 · 3 · 4 · 5 = 120.

Exercise 1.9. Expand the following sums.

(a)
∑7

i=4 i,

(b)
∑5

i=1(i
2 − i),

(c)
∑4

i=1 10
i,

(d)
∑

2≤i≤5
1
2i
,

(e)
∑

i∈S(−1)i, where S = { 2, 3, 5, 8 }.

Exercise 1.10. Write the following expressions in summation notation.

(a) 2 + 4 + 6 + 8 + 10,

(b) 1 + 4 + 7 + 10,

(c) 1
4
+ 1

2
+ 1 + 2 + 4,

(d) 1
4
− 1

2
+ 1− 2 + 4.

Exercise 1.11. Expand the following products.

(a)
∏−1

i=−4 i,

(b)
∏4

i=1(i
2),

(c)
∏3

i=1 2
i,

(d)
∏
−2≤i≤3

1
2i
,

(e)
∏

i∈S(−1)i, where S = { 2, 4, 6, 7 }.

Exercise 1.12. Write the following expressions in product notation.

(a) 1 · 3 · 5 · 7,
(b) (−1) · 2 · 5 · 8,
(c) 1

9
· 1
3
· 1 · 3 · 9.

Exercise 1.13. Compute the values of n! for every n ∈ { 0, 1, 2, 3, 4, 5, 6, 7, 8 }.
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Exercise 1.14. Compute the values of

5 + 3!

(5 + 3)!

4− 2 · 3!

(4− 2) · 3!

4− (2 · 3)!

3 · 2!

(3 · 2)!

4 · 3!

4! · 5.

Exercise 1.15. Prove that n! = n · (n − 1)! for every positive integer n.
Note, that it is even true for n = 1, which is one of the reasons we define 0!

to be equal to 1.

1.3 The Euclidean algorithm

In this section we introduce the so-called Division algorithm, we define the
greatest common divisor of given integers and we consider the Euclidean
algorithm, which is one of the oldest mathematical algorithms.

Division algorithm. Given two integers a and b such that b > 0. There
exist unique integers q and r for which

a = qb+ r, 0 ≤ r < b.

Here q is called quotient and r is called remainder. There is a special case,
when the Division algorithm yields r = 0. In such a situation a = qb for
some q.

Definition 1.11. We say that b divides a (b is a divisor of a or a is a multiple
of b) if there exists q such that a = qb. Notation: b | a.

How to find an appropriate q and r? Let us assume that we have two
positive integers a and b. We start with q = 0 and r = a. Clearly a = 0 ·b+a.
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If a < b, then we are done, otherwise a−b ≥ 0. So we write a = 1 ·b+(a−b).
We check if a−b < b. If this is the case then we have found q and r, otherwise
we have a−2b ≥ 0 and a = 2 · b+(a−2b). We stop when we have a−kb < b

for some k. For example, let a = 76 and b = 7 :

k a− kb

0 76
1 69
2 62
3 55
4 48
5 41
6 34
7 27
8 20
9 13
10 6

that is, we obtain that 76 = 10 · 7 + 6 and 0 ≤ 6 < 7.

Definition 1.12. Let a, b ∈ Z. A positive integer d is called a common
divisor of a and b, if d divides a and d divides b. The largest possible such
integer is called the greatest common divisor of a and b. Notation: gcd(a, b).

The Euclidean algorithm. Now we study a method to determine
gcd(a, b) of given positive integers a and b. The method also provides so-
lution of the linear Diophantine equation

ax+ by = gcd(a, b).

If we apply the Division algorithm to a, b, a > b, then we have

a = qb+ r, 0 ≤ r < b.

If d is a common divisor of a and b, then d divides r = a− qb as well. That
is the basic idea of the algorithm. The Euclidean algorithm works as follows.
First we apply the Division algorithm for a and b to obtain a quotient q1 and
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a remainder r1. Then we apply the Division algorithm for b and r1 to get a
new quotient q2 and a new remainder r2. We continue, we divide r1 by r2 to
obtain q3 and r3. We stop if we obtain a zero remainder. Since the procedure
produces a decreasing sequence of non-negative integers so must eventually
terminate by descent. The last non-zero remainder is the greatest common
divisor of a and b.

As an example we compute gcd(553, 161). We write the computations in
the following way:

553 = 3 · 161 + 70 q1 = 3, r1 = 70

161 = 2 · 70 + 21 q2 = 2, r2 = 21

70 = 3 · 21 + 7 q3 = 3, r3 = 7

21 = 3 · 7 + 0 q4 = 3, r4 = 0.

That is, the last non-zero remainder is 7, so gcd(553, 161) = 7. If we would
like to express 7 as 553x + 161y for some x, y ∈ Z, we can do it by working
backwards

7 = 70− 3 · 21

= 70− 3 · (161− 2 · 70) = −3 · 161 + 7 · 70

= −3 · 161 + 7 · (553− 3 · 161) = 7 · 553− 24 · 161.

It follows that x = 7 and y = −24.

Exercise 1.16. Use the Euclidean algorithm to find gcd(a, b) and compute
integers x and y for which

ax+ by = gcd(a, b) :

(a) a = 678, b = 567,

(b) a = 803, b = 319,

(c) a = 2701, b = 2257,

(d) a = 3397, b = 1849.
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1.4 Numeral systems

In this Section we learn about the different numeral systems. In everyday
life we use base 10. That is, when we talk about numbers, we use the base
10 notation.

Let us consider counting. Imagine Robinson Crusoe spending his days on
an uninhabited island, and he counts all the days by carving a vertical line
every day into a rock. He was raised using the base 10 numbers, thus after
reaching 9 lines, he crosses them on the tenth day (thus marking them as
ten). That way he groups together every ten days. Then, when he reaches
ten of such groups, then he carves a big box around them. That is how
he indicates hundreds. Then he circles around every ten boxes, indicating
thousands, etc. Then, reaching ten circles on one rock he would look for a
new rock to carve days into.

Assume Robinson had arrived at the island 1st May 1817, and was rescued
on 30th April 1850. How would his stones look like, after so much time? He
spent 33 years on the island, that is, 33 ·365 = 12045 days, not counting leap
years. The leap years are 1820, 1824, 1828, 1832, 1836, 1840, 1844, 1848,
that is, he spent 12053 days altogether on the island. That means one of the
ten thousands, two of the thousands, zero of hundreds, five of tens and three
of ones. That is, he would have one rock completely full with ten circles, ten
boxes in each circle, and ten of the ten lines crossed in each box. Then on
his second rock he would have two full circles, and next to them he would
have five of the ten crossed lines and three separate lines.

Robinson is basically writing the numbers in base 10 by grouping every
ten together. This is what we do, as well, except maybe in a bit more
abstract and automatic way. When we think about the number 12053, we
automatically give the meaning to the positions with the appropriate powers
of 10:

12053 = 1 · 10 000 + 2 · 1 000 + 0 · 100 + 5 · 10 + 3 · 1 =

= 1 · 104 + 2 · 103 + 0 · 102 + 5 · 101 + 3 · 100.

By writing the digits next to each other we indicate their value by their
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positioning. The value of the rightmost digit is 1 = 100, then going from right
to left the value increases by a factor of 10. That is, the value of the second
rightmost digit is 101, the digit left from it is 102, etc. We have ten digits
altogether (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), because every tens will be grouped
together by this positioning.

All other numeral systems are based on the same idea. Considering for
example base 2 (the binary system), we will only need two digits: 0 and 1,
because every twos will be grouped together. The values of the digits from
right to left will be the two powers in increasing order, that is, 1, 2, 4, 8,
16, 32, 64, etc. We indicate by the number 2 in the lower right corner of the
number that the base is 2. For example

1010112 = 1 · 25 +0 · 24 +1 · 23 +0 · 22 +1 · 21 +1 · 20 = 32+8+2+1 = 4310.

Numbers are almost exclusively represented in their binary form in Computer
Science.

Another typical example from Computer Science could be the octal sys-
tem, i.e. base 8 (1 byte equals to 8 bits). Then there are eight digits (0, 1, 2,
3, 4, 5, 6, 7), and the values of the digits from right to left are the increasing
powers of 8. Similarly, in Computer Science, base 16 (hexadecimal number
system) is used. Here, the values of the digits from right to left are the in-
creasing powers of 16, and we need 16 digits. That is, we need separate digits
for the digits corresponding to 10, 11, 12, 13, 14 and 15. By convention, we
denote these digits by the first six letters of the alphabet:

A16 = 1010, B16 = 1110 C16 = 1210,

D16 = 1310, E14 = 1410 F16 = 1510.

At first, it might look strange to use digits for the number ten, eleven or
twelve. This is actually not so surprising if we think about some historical
number systems. Counting months, or looking at the clock we use base 12
numeral system. Until 1971 British people used base 12 for money exchange
(12 pennies were worth 1 shilling). Moreover, in the English language eleven
and twelve have different names, they are not generated as all the others
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between 10 and 20, indicating that they may have been distinguished as
extra digits.

Generally, in base n we need n digits, running from 0 to (n − 1). We
will write numbers in positional system, as above. The values of the digits
are the powers of n going from right to left. That is, the rightmost digit
has value n0 = 1, the second rightmost digit has value n1 = n, the digit left
to it has value n2, etc. Thus, the number atat−1 . . . a2a1a0 in base n (where
0 ≤ ak ≤ n− 1 for every 0 ≤ k ≤ t) represents the number

(atat−1 . . . a2a1a0)n =
t∑

k=0

ak ·nk = at·nt+at−1·nt−1+· · ·+a2·n2+a1·n1+a0·n0.

Now, the question is how to write numbers into different numeral systems.
First of all, to write numbers from a numeral system into base 10 we basically
calculate the values of the digits using the positional systems, and sum the
results:

101012 = 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 16 + 4 + 1 = 2110

12123 = 1 · 33 + 2 · 32 + 1 · 31 + 2 · 30 = 27 + 18 + 3 + 2 = 5010

3728 = 3 · 82 + 7 · 81 + 2 · 80 = 192 + 56 + 2 = 25010

AFE16 = 10 · 162 + 15 · 161 + 14 · 160 = 2560 + 240 + 14 = 281410.

Another method is to repeatedly multiply by the base and add the next digit.
For example:

101012 = (((1 · 2 + 0) · 2 + 1) · 2 + 0) · 2 + 1

((2 · 2 + 1) · 2 + 0) · 2 + 1 = (5 · 2 + 0) · 2 + 1 = 2110

12123 = ((1 · 3 + 2) · 3 + 1) · 3 + 2

= (5 · 3 + 1) · 3 + 2 = 16 · 3 + 2 = 5010

3728 = (3 · 8 + 7) · 8 + 2 = 31 · 8 + 2 = 25010

AFE16 = (10 · 16 + 15) · 16 + 14 = 175 · 16 + 14 = 281410.

The other direction is to find a base n representation of a decimal number.
Again, it can be done in two different ways. The first is that we check
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the highest n-power which is not greater than our number, execute division
algorithm with this n-power, and repeat the process for the remainder, until
the remainder is 0. For example, write 25010 in base 8. The 8-powers are (in
increasing order) 1, 8, 64, 512, the last one is already greater than 250. Thus
we execute the division algorithm with 64: 250 = 3 · 64 + 58. Now, 8 is not
greater than 58, thus we execute the division algorithm by 8: 58 = 7 · 8 + 2.
Finally, 1 is the highest 8-power not greater than 2, and after the division
algorithm we obtain 2 = 2 · 1 + 0. Thus

25010 = 3 · 64 + 7 · 8 + 2 · 1 = 3 · 82 + 7 · 81 + 2 · 80 = 3728.

Exercise 1.17. Write 2110 in base 2, 5010 in base 3, 281410 in base 16 using
the method explained above.

The other method is to execute the division algorithm repeatedly on the
quotients until the quotient is not 0, and then the number will consist of the
remainders backwards. For example, if we want to rewrite 281410 into base
16, then

2814 = 175 · 16 + 14,

175 = 10 · 16 + 15,

10 = 0 · 16 + 10.

The remainders backwards are 10 = A, 15 = F , 14 = E, thus

281410 = AFE16.

Exercise 1.18. Write 2110 in base 2, 5010 in base 3, 25010 in base 8 using
the division algorithm.

How would we write a number of an arbitrary base into another (arbi-
trary) base? One method could be that we simply rewrite it first into base
10, then write it into the other system. For example, if we need to write 3728
into base 3, we can do the following. Rewrite 3728 first into base 10:

3728 = 3 · 82 + 7 · 81 + 2 · 80 = 192 + 56 + 2 = 25010.
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Now, rewrite 25010 into base 3:

250 = 83 · 3 + 1,

83 = 27 · 3 + 2,

27 = 9 · 3 + 0,

9 = 3 · 3 + 0,

3 = 1 · 3 + 0,

1 = 0 · 3 + 1.

The remainders backwards are 1, 0, 0, 0, 2, 1, thus

3728 = 25010 = 1000213.

Finally, we mention that some rewriting can be done much quicker if one
base is a full power of another. For example, 8 = 23, and then every base 8
digit can be rewritten easily to three base 2 digits:

08 = 0002, 18 = 0012,

28 = 0102, 38 = 0112,

48 = 1002, 58 = 1012,

68 = 1102, 78 = 1112.

Going from right to left, every three base 2 digits can be easily rewritten into
base 8, as well. Thus, it is easy to rewrite 3728 into base 2 or 101012 into
base 8:

3728 = 011 111 0102 = 111110102,

101012 = 010 1012 = 258.

Similarly, as 16 = 24, every base 16 digit can be rewritten easily to four
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base 2 digits:

016 = 00002, 116 = 00012,

216 = 00102, 316 = 00112,

416 = 01002, 516 = 01012,

616 = 01102, 716 = 01112,

816 = 10002, 916 = 10012,

A16 = 10102, B16 = 10112,

C16 = 11002, D16 = 11012,

E16 = 11102, F16 = 11112.

Going from right to left, every four base 2 digits can be easily rewritten into
base 16, as well. Thus, it is easy to rewrite AFE16 into base 2 or 101012 into
base 16:

AFE16 = 1010 1111 11102 = 1010111111102,

101012 = 0001 01012 = 1516.

We have to stress, though, that this method only works if one base is a
full power of the other. Finally, base 8 numbers can be easily changed to
base 16 (and vice versa) by first changing them to base 2, and then into the
other base:

3728 = 011 111 0102 = 111110102 = 1111 10102 = FA16,

AFE16 = 1010 1111 11102 = 1010111111102 = 101 011 111 1102 = 53768.

Exercise 1.19. (a) Write the following numbers into base 10: 1110011012,
10101012, 111112, 101102, 1010101012, 100010002, 10101112, 1111012,
211023, 12345, 12347, 12348, 7778, 3458, 20128, 45658, 11238, 6668, 7418,
CAB16, BEE16, EEE16, 4D416, ABC16, 9B516, DDD16, 3F216.

(b) Write the following decimal numbers into base 2, 3, 5, 7, 8, 9, 16:
6410, 5010, 1610, 10010, 201210, 20010, 15110, 4810, 9910, 99910.
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(c) Rewrite the given numbers into the particular numeral system:

11213 = . . . . . . 2,

43125 = . . . . . . 7,

6548 = . . . . . . 9,

AD216 = . . . . . . 7,

5438 = . . . . . . 3,

5439 = . . . . . . 3.

(d) Write the following numbers into base 2 and base 16: 7778, 3458, 20128,
4568, 2358, 1478, 7418, CAB16, BEE16, EEE16, 4D316, ABC16, FEE16,
9B516, 3F216.



Chapter 2

Counting

In this Chapter we will consider counting problems. These will be problems,
where we need to count the number of possibilities of something happening.
Let us warm up to this first by solving some easy exercises.

At the “Freshmen’s party” several people meet. Five friends (Arnold, Bill,
Carl, David, Edmund) greet each other at this party by shaking hands. How
many handshakes does this mean? It is not too hard to count all possibilities:
Arnold shakes hand with Bill, Carl, David, Edmund, Bill shakes hand with
Carl, David, Edmund (we have already counted the Arnold-Bill handshake),
Carl shakes hand with David and Edmund (we have already counted the
Arnold-Carl and Bill-Carl handshake), David shakes hand with Edmund (we
have already counted all other handshakes with David), and all handshakes
with Edmund is already accounted for. That is, there are 4 + 3+ 2+ 1 = 10

handshakes altogether.
Now, this was easy, but this party is very big, and a lot of people attend

it. Say, there are 200 College freshmen greeting each other by shaking hands.
How many handshakes are there? We can try to generalize our former ar-
gument. Let us count the number of handshakes by ordering the people in
some way (say, by date of birth). That is, first we count the handshakes
by the oldest person, then the handshakes by the second oldest person, etc.
The oldest person shakes hand with 199 other people, this is 199 handshakes.
The second oldest person shakes hand with 199 people, as well, but we have
already counted 1 handshake with the oldest person. That is, we count 198
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more handshakes. For the third oldest person, out of 199 handshakes we
have already counted 2: one with the oldest person and one with the sec-
ond oldest person. That is, we count 197 more handshakes, etc. Continuing
this argument, we count one less handshakes with each person. For the sec-
ond youngest people we count only one new handshake: the handshake with
the youngest person. And finally, for the youngest person we have already
counted all handshakes. That is, the number of handshakes is

199 + 198 + 197 + · · ·+ 1.

How much is this number? Is there an easier way to calculate it, rather than
adding all these numbers together? Those who are familiar with arithmetic
progressions can calculate easily that the answer is 199·200

2
= 19 900. But

even without that knowledge, we can calculate this sum by observing that
the sum of the first and last number is 200. Then the sum of the second and
one but last number is 200, again. We can continue this argument, and reach
99 + 101 = 200, and the number 100 is left alone. That is,

1 + 2 + · · ·+ 198 + 199 = (1 + 199) + (2 + 198) + · · ·+ (99 + 101) + 100

= 99 · 200 + 100 = (99 · 2 + 1) · 100 = 19 900.

This summation argument works in general, as well:

Proposition 2.1. For a positive integer n we have

1 + 2 + · · ·+ (n− 1) + n =
n · (n+ 1)

2
.

Exercise 2.1. Prove Proposition 2.1 by using the argument described above.
Make two cases depending on whether n is even or odd.

Proof. We show another proof here, which is usually attributed to Carl
Friedrich Gauss.1 Let S be the sum of the integers from 1 to n, and write
the same sum in reverse order below:

S = 1 + 2 + · · ·+ (n− 1) + n,

S = n+ (n− 1) + · · ·+ 2 + 1.

1German mathematician and physicist, 1777–1855.
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Adding the two equations together, we obtain

2S = (1 + n) + (2 + n− 1) + · · ·+ (n− 1 + 2) + (n+ 1),

2S = (n+ 1) + (n+ 1) + · · ·+ (n+ 1) + (n+ 1),

2S = n · (n+ 1),

S =
n · (n+ 1)

2
.

Now, we are able to tell the number of handshakes between n people.
Using the same line of thought, the first person shakes hand with (n − 1)

other people, the next one with (n−2) other people (we already counted the
handshake with the first person), etc. That is, the number of handshakes
between n people is

(n− 1) + (n− 2) + · · ·+ 1,

which is (n−1)·n
2

by Proposition 2.1 (writing (n − 1) instead of n). Thus, we
have proved

Corollary 2.2. The number of handshakes between n people is

1 + 2 + · · ·+ (n− 1) =
(n− 1) · n

2
.

Proof. Even though we have already proved the statement above, we give
here an alternative proof. The reason for this is that this proof method will
be useful later on.

Every person shakes hand with (n − 1) other people. Altogether there
are n people, this would mean (n − 1) · n handshakes. But this way every
handshake is calculated twice: a handshake between A and B is calculated
once for A and once for B. Thus, in reality, (n − 1) · n is twice the number
of handshakes. That is, the number of handshakes is (n−1)·n

2
.

Exercise 2.2. Five friends meet at this party. Some of them shake hands.
Is it possible that everyone shook hands exactly three times? What is the
answer if a person can shake hands with another more than once? What are
the answers if seven people meet?
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Four girls (Alice, Beth, Carrie, Diane) and four boys (Ed, Frank, George,
Hugo) meet at this party. As a greeting any two boys shake hands with each
other, but with the girls the two parties kiss each other on the cheek.

Exercise 2.3. How many handshakes and kisses are there?

After greeting each other, they want to dance. In fact, every boy wants
to dance with every girl, and they are interested in how many rounds they
need to achieve this.

First, let us count the number of ways they can form dancing couples (one
boy and one girl). There are four boys, and four girls, every boy wants to
dance with every girl, that is, there are altogether 4 ·4 = 16 possible couples.
We can even list these 16 possibilities:

Alice – Ed Beth – Ed Carrie – Ed Diane – Ed
Alice – Frank Beth – Frank Carrie – Frank Diane – Frank
Alice – George Beth – George Carrie – George Diane – George
Alice – Hugo Beth – Hugo Carrie – Hugo Diane – Hugo

In one round four couples can dance. How many ways can they form four
dancing couples for one round? Assume that each girl chooses a partner in
a certain order. First Alice chooses a partner, then Beth, then Carrie, and
finally Diane dances with whoever is left. Alice has four choices, because she
can choose any of the boys. Beth will only have three choices, because Alice
will have already chosen someone. Carrie will have only two choices, because
Alice and Beth will have already chosen someone. Finally, Diane has only
one choice. Altogether, they have 4 · 3 · 2 · 1 = 24 possibilities to form four
dancing couples at the same time.

Now, in one round at most four couples can dance. Therefore they will
need at least 16

4
= 4 rounds for everyone dancing with everyone else. But be

careful! We only proved that they need 4 rounds, we have not proved that
they can actually do it in 4 rounds. The easiest is to just give a “schedule”
for the 16 couples in each rounds, e.g. see Table 2.1
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Table 2.1: Four couples dancing in four rounds

1st round 2nd round 3rd round 4th round
Alice – Ed Beth – Ed Carrie – Ed Diane – Ed
Beth – Frank Alice – Frank Diane – Frank Carrie – Frank
Carrie – George Diane – George Alice – George Beth – George
Diane – Hugo Carrie – Hugo Beth – Hugo Alice – Hugo

Exercise 2.4. Is it possible

(a) to distribute 100 rabbits into five packs such that each pack contains
an odd number of rabbits?

(b) that both the sum and the product of some integer numbers are 9?

(c) that both the sum and the product of 9 integer numbers are 9?

(d) that the sum of 9 integer numbers is 0 and the product of these numbers
is 9?

Exercise 2.5. (a) What is the sum of the first 24 positive integers, i.e.
1 + 2 + 3 + · · ·+ 23 + 24 =?

(b) Compute 1+2+3+4+···+23+24
1−2+3−4+···+23−24 .

2.1 Sequences

In Section 1.4 we have learned how to write a number in different numeral
systems. We are now interested in how many n-digit numbers exist in a
certain numeral system. Let us start with base 10. We know that there
are 9 one-digit positive integers: 1, 2, 3, 4, 5, 6, 7, 8, 9. How many two
digit positive integers exist? One way to count them is that we know that
there are 99 positive integers which are one-digit or two-digit long. We have
already counted that there are 9 one-digit positive integers. Therefore there
are 99− 9 = 90 two-digit positive integers.
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We could have calculated this differently: there are 9 possibilities for a
first digit of a two-digit number, and there are 10 possibilities (independently
from the first digit) for the second digit. That is, there are 9 · 10 two-digit
positive integers.

Now, what about three-digit positive integers? There are 999 ‘at most
three-digit numbers’, and 99 are ‘at most two-digit numbers’. Thus there are
999 − 99 = 900 three-digit positive integers. But we can obtain this result
by using the other idea, as well. There are 9 possibilities for the first digit of
a three-digit number, 10 possibilities for the second digit and 10 possibilities
for the third digit, that makes 9 · 10 · 10 = 900 possibilities for three digit
positive integers.

Let us generalize this argument for n-digit positive integers. There are
9 possibilities for the first digit, and 10 possibilities for every other digit.
Altogether, the number of n-digit positive integers (in base 10) is

9 · 10 · · · · · 10︸ ︷︷ ︸
n−1

= 9 · 10n−1.

Exercise 2.6. How many n-digit base 2 positive integers exist?

We could generalize this idea for arbitrary bases.

Proposition 2.3. The number of n-digit base k positive integers is

(k − 1) · kn−1.

Proof. There are (k− 1)-many possibilities for the first digit (it cannot be 0,
only 1, 2, . . . , k− 1), and there are k possibilities for every other digit. Thus,
the number of n-digit positive integers in base k is

(k − 1) · k · · · · · k︸ ︷︷ ︸
n−1

= (k − 1) · kn−1.

And what about the “at most” n-digit non-negative integers in base k

(including 0)? In this case, we can consider them as n-digit numbers, where
the first digit can be 0, as well. Thus, there are k possibilities for the first
digit, k possibilities for the second digit, etc. Thus,
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Proposition 2.4. The number of “at most” n-digit non-negative integers in
base k is

k · k · · · · · k︸ ︷︷ ︸
n

= kn.

In a very similar way we can count the number of possible 5 letter long
words. (Here, we count the not necessarily meaningful words, as well.) In-
deed, as the English alphabet consists of 26 letters, we have 26 possibilities
for the first letter, 26 possibilities for the second letter, etc. That is, the
number of 5 letter long words is

26 · 26 · 26 · 26 · 26 = 265.

It seems, that it is easy to calculate sequences of letters (i.e. possible
words), as long as we know how long they should be and how many letters
the alphabet has. Indeed, we can formulate our main theorem.

Theorem 2.5. Let the alphabet consist of k letters. Then the number of n
letter long sequences (possible words) is kn.

Proof. There are k possibilities to choose the first letter. Then, there are
k possibilities to choose the second letter (no matter how we have chosen
the first letter), etc. Altogether there are n letters to choose (with possible
repetitions), thus the number of n letter long sequences is

k · k · · · · · k︸ ︷︷ ︸
n

= kn.

Sometimes this theorem needs to be combined for different alphabets for
each letter. We already saw an example: for calculating the number of n-
digit long base 10 numbers, the first digit is an element of an alphabet of
size 9, and every other (n − 1) digit can be an element of size 10. As the
choice of the digits is independent to each other, the number of n-digit base
10 numbers is 9 · 10n−1.

Another possible example is the mobile phone number of a person. In
Hungary, there are three mobile providers, and each provider issues 7 digit
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long numbers. Thus altogether there are 3 · 107 possibilities for a mobile
phone number in Hungary.

Exercise 2.7. How many 3 digit palindrome numbers exist (in base 10)?
(Palindrome numbers are numbers which are the same if read backwards.
How many at most 3 digit palindrome numbers exist (in base 10)? Generalize
the result to n-digit base k palindrome numbers.

Exercise 2.8. The Hungarian alphabet contains 44 letters. How many 5,
7, 10 letter long (not necessarily meaningful) words can be created using
Hungarian letters?

Exercise 2.9. In Hungary there is a game called “TOTÓ”, where one bets
on the outcome of certain football games. There are 13+1 games one can bet
on, and there are 3 choices for each of them: one writes ‘1’ if they think that
the first team wins, one writes ‘2’ if they think that the second team wins,
and ‘X’ means that the result is a draw. How many TOTÓ tickets should be
filled out to make sure that one of them will be correct for all 13+ 1 games?

Exercise 2.10. In a company the following system is used to record the
people working there: in the first record the name of the person is written as
a 20 long string with possible spaces. Then the gender of the person is put
into the next record (male/female). Then follows the person’s job title in a
10 letter long string, and finally comes the payment of the person as an at
most 8 digit non-negative integer in base 10. How many people records can
be stored in this system if we allow empty names/job titles, as well?

2.2 Number of subsets

In Section 1.1 we have learned what a set is, and what its subsets are. Now,
we want to count these subsets. Let us begin with some exercises.

Exercise 2.11. List all subsets of { 1, 2, 3 }, { a, b, c }, {Alice, Beth, Carrie },
{ apple, banana, cherry }. How many subsets do these sets have?
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After solving Exercise 2.11, one suspects that the number of subsets de-
pend only on the cardinality of the set, and not on the actual elements of
the set. This is true in general: for example if a set has three elements, then
we might as well name the elements a, b and c, and then its subsets will be
exactly the same as we determined in Exercise 2.11.

Let us try to determine the number of subsets of a set with given car-
dinality. Let S be a set of cardinality 0, i.e. S = ∅. Then S has only one
subset: ∅. If S is a set of cardinality 1, e.g. S = { a }, then it has two subsets:
{ } = ∅, { a } = S. If S is a set of cardinality 2, e.g. S = { a, b }, then it has
four subsets: { } = ∅, { a }, { b }, { a, b } = S. If S is a set of cardinality 3,
e.g. S = { a, b, c }, then it has eight subsets: { } = ∅, { a }, { b }, { c }, { a, b },
{ a, c }, { b, c }, { a, b, c } = S. Figure 2.1 shows all subsets of { a, b, c }. In
this figure, two sets are connected if the lower one is a subset of the upper
one. Table 2.2 summarizes our findings on the number of subsets so far.

{ a, b, c }

{ a, b } { a, c } { b, c }

{ a } { b } { c }

{ }

Figure 2.1: Subsets of { a, b, c }.

Exercise 2.12. Guess what the rule is by looking at Table 2.2 and listing
all subsets of { a, b, c, d } and { a, b, c, d, e }, if necessary.

It seems that if S has n elements, then it has 2n subsets. This is reinforced
by Figure 2.1, where we represented the subsets of a three-element set by the
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Table 2.2: Number of subsets

Cardinality of S Number of subsets of S

0 1

1 2

2 4

3 8

eight vertices of a cube. This conjecture is true in general:

Theorem 2.6. Let S be a set of cardinality n for some n ≥ 0 integer. Then
S has 2n-many subsets.

Proof. Let us denote the elements of S by a1, a2, . . . , an, that is,

S = { a1, a2, . . . , an } .

Let us try to build a subset T of S, and we count the number of possibilities
to create different subsets T . First we decide whether or not a1 ∈ T , that is,
whether or not we put a1 into T . This gives us two choices. Now, independent
of how we decided on a1, we decide whether or not we want to put a2 into
T , that is, whether or not a2 ∈ T . This, again, gives us two choices. Third
(independently on how we decided on the earlier elements) we decide whether
or not we put a3 into T , that is, whether or not a3 ∈ T . This, again, gives
us two choices, etc.

This way we decide after each other for every element whether or not we
want to put the element into T . On the one hand, if at some point we choose
differently, then we obtain different subsets in the end. For example, if for
ak we decide differently, then in one case ak will be an element of the subset,
in the other case it will not be an element. Thus the two subsets will differ
in ak. On the other hand, all subsets can be obtained this way: for a subset
A we decide to put the elements of A into T , and not put other elements in.
This way, T = A will be built.

That is, by deciding for every element whether or not it should be in T

we obtain all subsets exactly once. For each element we have two choices:
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either we put them into the subset or we do not put them into the subset.
These choices on the elements are independent from each other, thus for all
n elements we have

2 · 2 · · · · · 2︸ ︷︷ ︸
n

= 2n

choices. This is the same as the number of subsets of S. Thus an n element
set has 2n-many subsets.

Exercise 2.13. For S = { a, b, c } obtain all subsets using this decision algo-
rithm.

There are different ways to obtain the same result. Another argument
can be the following:

Second proof of Theorem 2.6. We give a draft of the proof, which can be
made precise after reading about mathematical induction. Again, let us
denote the elements of S by a1, a2, . . . , an, that is,

S = { a1, a2, . . . , an } .

Here, every subset either contains an or does not contain an.
First, consider those subsets, which do not contain an, and let S ′ =

{ a1, a2, . . . , an−1 }. Observe that a subset of S not containing an is in fact a
subset of S ′. Moreover, every subset of S ′ is a subset of S not containing an.
That is, there is a one-to-one correspondence between the subsets of S not
containing an and the subsets of S ′.

Now, consider the subsets of S containing an. Observe that a subset of
S containing an is in fact a union of a subset of S ′ and { an }. That is, it
is an added to a subset of S ′. Moreover, if we add an to every subset of
S ′ we obtain a subset of S containing an. That is, there is a one-to-one
correspondence between the subsets of S containing an and the subsets of S ′.

Thus, the number of subsets of S is twice as the number of subsets of S ′.
Continuing this argument, we obtain that the number of subsets of S is 4
times the number of subsets of { a1, . . . , an−2 }, etc. That is, the number of
subsets of S is 2n times the number of subsets of { } = ∅. As the latter has
only 1 subset, S has exactly 2n-many subsets.
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Note, that this argument would not have been necessary, as we have
already proved the statement of Theorem 2.6. Therefore this new proof
does not make the statement any more true (in any case, a mathematical
statement is either true or not true, there are no degrees to how true it is).
What it provides is a different insight into how we can build subsets of a set.
For example, this argument can be useful if we need certain types of subsets:

Exercise 2.14. List all subsets of S = { a, b, c, d } not containing d, and
note that they are exactly the subsets of { a, b, c }. Then list all subsets of
S = { a, b, c, d } containing d, and note that they are exactly the subsets of
{ a, b, c } with d added to them.

It is an interesting coincidence that there are 2n subsets of an n-element
set, and that exactly 2n-many at most n-digit binary numbers exist. Such
a coincidence always makes a mathematician suspicious that there might be
more to it than just accidental equality.

Exercise 2.15. Encode all subsets of S = { a, b, c, d } in the following way:
for every subset T we assign an at most four digit binary number. The first
digit is 0 if d /∈ T , and 1 if d ∈ T . Similarly, the second digit is 0 if c /∈ T ,
and 1 if c ∈ T . The third digit is 0 if b /∈ T , and 1 if b ∈ T . Finally,
the fourth digit is 0 if a /∈ T , and 1 if a ∈ T . Note that this is a one-to-
one correspondence between the subsets and the at most four digit binary
numbers.

The idea of Exercise 2.15 works in general, as well:

Third proof of Theorem 2.6. This time it is probably more helpful to denote
the elements of S by a0, a1, . . . , an−1, that is,

S = { a0, a1, . . . , an−1 } .

Now, we assign an at most n-digit binary number to every subset of S. Let
T be an arbitrary subset of S, and we assign a binary number to it in the
following way. Its last digit (corresponding to 20) is 0 if a0 /∈ T and 1 if
a0 ∈ T . Similarly, the one but last digit (corresponding to 21) is 0 if a1 /∈ T
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and 1 if a1 ∈ T . In general, the (k+ 1)st digit from the back (corresponding
to 2k, 0 ≤ k ≤ n − 2) is 0 if ak /∈ T and 1 if ak ∈ T . Finally, the first
digit (corresponding to 2n−1) is 0 if an−1 /∈ T and 1 if an−1 ∈ T . This way
we assigned an at most n-digit binary number to every subset. For different
subsets we assigned different binary numbers, and for every number we can
easily generate the subset corresponding to it (we just need to add those
elements into the subset where the digit is 1). That is, this encoding is
a one-to-one correspondence between subsets of S and the at most n-digit
binary numbers. By Proposition 2.4 we know that there are 2n-many at most
n-digit binary numbers. Thus, S has 2n-many subsets, as well.

This third proof, again, gives something extra to our knowledge. Now,
we have enumerated all the subsets of S, and if we are interested in the kth
subset, we can easily compute it.

Exercise 2.16. Let S = { a0, a1, a2, a3 }. Let us encode the subsets of S as
in the third proof of Theorem 2.6. Compute the subsets corresponding to
the binary representation of 11, 7, 15.

Exercise 2.17. Let S = { a0, a1, a2, a3, a4 }. Let us encode the subsets of S
as in the third proof of Theorem 2.6. Compute the subsets corresponding to
the binary representation of 11, 7, 15, 16, 31. Compare the results to those
of Exercise 2.16.

Exercise 2.18. Let S = { a0, a1, a2, a3, a4, a5 }. Let us encode the subsets of
S as in the third proof of Theorem 2.6. Compute the subset corresponding
to the binary representation of 49.

Exercise 2.19. Let S = { a0, a1, a2, a3, a4, a5, a6 }. Let us encode the subsets
of S as in the third proof of Theorem 2.6. Compute the subset corresponding
to the binary representation of 101.

Exercise 2.20. Let S = { a0, a1, a2, a3, a4, a5, a6, a7 }. Let us encode the
subsets of S as in the third proof of Theorem 2.6. Compute the subset
corresponding to the binary representation of 199.
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2.3 Permutations

Three students are taking an oral exam in Mathematics. After the usual half
hour preparation time, one by one they tell the examiner about the theorem
the examiner gave them. In how many different order can they do the exam?
Let the three students be Alice, Beth and Claire.

It is not hard to list all possibilities. For example, Alice can start the
exam, and then Beth follows and Claire finishes, or Claire follows and Beth
finishes. Similarly, Beth can start with the exam, then Alice can follow and
then Claire, or Claire and then Alice. Finally, Claire may start, and Alice
continues and then Beth, or Beth continues and Alice finishes. Table 2.3 lists
all six possibilities.

Table 2.3: The orders in which Alice, Beth and Claire can take the exam

first second third
Alice Beth Claire
Alice Claire Beth
Beth Alice Claire
Beth Claire Alice
Claire Alice Beth
Claire Beth Alice

Looking at Table 2.3, one can think of a general argument, as well. There
are three ways to choose who the first person will be (Alice, Beth or Carrie).
Then no matter what that choice was, there will be two possibilities left
for choosing who the second person will be (the second person cannot be
whoever was the first one). Then the person left will take the exam as the
third. Altogether, this is 3 · 2 · 1 = 6 possibilities.

At the next exam, there are four students: Ed, Frank, George, Hugo.
This time they decide in advance in what order they want to do the exam.
In how many different orders can they do the exam?
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Exercise 2.21. List all possibilities for Ed, Frank, George and Hugo to find
an order for themselves.

Let us try to use our new argument. There are four possibilities for
choosing the person who starts the exam. Then, no matter who starts, there
are three possibilities for choosing the second person (as the first person has
already been chosen). Then there are only two possibilities for the third
person, and whoever remains will be the fourth. That is, altogether they
have 4 · 3 · 2 · 1 = 24 possibilities to choose the order to do the exam.

What was the common in these two exercises (apart from the exam)? The
fact that in both cases we needed to count the number of different orders of
the people. In general, if there are n elements, then we call an ordering of
these elements a permutation. Now, what happens if we need to count the
number of permutations of n elements? It can be calculated similarly, e.g.
the result would be n · (n− 1) · · · · · 2 · 1. This is the number we denoted by
n! in Section 1.2.

Theorem 2.7. The number of permutations of n elements is n!.

Proof. A permutation is an ordering of the n elements. We have n-many
ways to choose the first element, then (n − 1)-many ways to choose the
second element (we cannot choose the first anymore), then (n − 2)-many
ways to choose the third element, etc. Thus the number of different ways we
can put these n elements into an order is

n · (n− 1) · (n− 2) · · · · · 2 · 1 = n!.

Note, that permutations may arise in many situation. Recall that at the
beginning of Chapter 2, Alice, Beth, Claire, Diane, Ed, Frank, George and
Hugo wanted to form four dancing couples. Then Alice chose a partner first,
then Beth, then Claire, and finally Diane. That is, their choosing put an
order on the four boys, and therefore determined a permutation of them.
And indeed, there are 4! = 24 permutations of the four boys, and they can
form four dancing couples in 4! = 24-many ways, as well.
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Exercise 2.22. How many four digit numbers exist, where all of the digits
1, 2, 3, 4 appear exactly once?

Exercise 2.23. Howmany four letter long (not necessarily meaningful words)
can be built from the letters a, b, c, d, if all letters must be used exactly once?

Exercise 2.24. Five boys and three girls buy cinema tickets. They receive
the tickets in the same row, their seats are numbered from 1 to 8. How many
different ways can they sit on the seats? How many different ways can they
sit on the seats if boys sit on seats from 1 to 5, and girls sit on seats from 6
to 8?

2.4 Anagrams

An anagram of a word is another word (or sometimes many words) which is
built up from the letters of the original, using each letter exactly once. For
example an anagram of ‘retinas’ can be ‘nastier’, ‘retains’, or ‘stainer’. Even
‘sainter’ is a meaningful anagram (means trustworthy). One can even form
anagrams using multiple words, like ‘tin ears’ or ‘in tears’.

We are interested in the number of anagrams a word can have. Of course,
the number of all meaningful anagrams would be very hard to find, because
some expressions can be meaningful to some, and not to others. For example,
Oxford English Dictionary only contains the following anagrams of ‘east’: ‘a
set’, ‘east’, ‘eats’, ‘sate’ (i.e. satisfy), ‘seat’, ‘teas’. Nevertheless, there is
meaning given to all possible anagrams of ‘east’ in Ross Eckler’s Making the
Alphabet Dance.2

In any case, how many possible anagrams are there for the word ‘east’?
Let us build them up: for the first letter we have 4 choices, then we have
only 3 choices for the second letter, we are left only with two choices for the
third letter, and the not chosen letter will be the forth. That is, altogether
there are 4 · 3 · 2 · 1 = 4! = 24-many anagrams. This is exactly the number
of permutations of the four letter ‘a’, ‘e’, ‘s’ and ‘t’.

2Ross Eckler, Making the Alphabet Dance, St Martins Pr (July 1997)
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(Here we did not count the spaces and punctuations. It is possible that
by clever punctuations one can make more of these. For example ‘a set’ and
‘as ET’ are both anagrams with the same order of letters, but with different
meaning.)

To make matters simple, from now on we are only interested in the not
necessarily meaningful anagrams, without punctuations. Thus, ‘east’ has 24
anagrams.

Exercise 2.25. How many anagrams does ‘retinas’ have?

Now, let us count the number of anagrams of ‘eye’. There are only three
of them: ‘eye’, ‘eey’, ‘yee’. Unfortunately, exactly the same argument as
before does not work in this case. The complications arise because of the
two e’s: that is, those two letters are the same. We could easily solve the
problem if the two e’s would be different. Thus let us make them look
different. Let us colour one of the e’s by blue, the other e by red, and
consider all coloured anagrams. Now, every letter is different, and the former
argument works: there are 3 · 2 · 1 = 6 coloured anagrams. Nevertheless, we
are interested in the number of anagrams, no matter their colour. Therefore
we group together those anagrams, which represent the same word, only they
are coloured differently (see Figure 2.2).

eye

yee

eye

yee

eey

eey

Figure 2.2: Coloured anagrams of ‘eye’

Now, we are interested in the number of groups. For that, we need to
know the number of anagrams in one group. Take for example the group cor-
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responding to the anagram ‘eye’ (upper right part). There are two different
colourings depending on the e’s: we can colour the first ‘e’ by two colours,
and the second ‘e’ by one colour, therefore there are 2·1 = 2 coloured ‘eye’s in
that group. Similarly, every group contain exactly two coloured anagrams.
Thus the number of groups (and the number of uncoloured anagrams) is
6
2
= 3.

Exercise 2.26. How many anagrams does the word ‘puppy’ have? Try to
use the argument presented above.

This argument can now be generalized when more letters can be the same:

Theorem 2.8. Let us assume that a word consists of k different letters,
such that there are n1 of the first letter, n2 of the second letter, etc. Let
n = n1 + n2 + · · ·+ nk be the number of letters altogether in this word. Then
the number of anagrams this word has is exactly

n!

n1! · n2! · · · · · nk!
.

Proof. Let us color all the letters with different colours, and let us count first
the number of coloured anagrams. This is the number of permutations of n
different letters, that is, n! by Theorem 2.7.

Now, group together those anagrams which represent the same word,
and differ only in their colourings. The number of uncoloured anagrams is
the same as the number of groups. To compute this number, we count the
number of coloured words in each group.

Take an arbitrary group representing an anagram. The words listed in
this group differ only by the colourings. The first letter appears n1-many
times, and these letters have n1!-many different colourings by Theorem 2.7.
Similarly, the second letter appears n2-many times, and these letters have
n2!-many different colourings by Theorem 2.7, etc. Finally, the kth letter
appears nk-many times, and these letters have nk!-many different colourings
by Theorem 2.7. Thus, the number of words in a group is n1! · n2! · · · · ·
nk!. Therefore the number of groups, and hence the number of (uncoloured)
anagrams is

n!

n1! · n2! · · · · · nk!
.
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Exercise 2.27. How many anagrams does the following expressions have?

(a) ‘college’,

(b) ‘discrete’,

(c) ‘mathematics’,

(d) ‘discrete mathematics’,

(e) ‘college discrete mathematics’.

Exercise 2.28. Alice, Beth and Carrie are triplets. For their birthdays,
they receive 12 bouquets of flowers, all of them are from different flowers.
They decide that Alice should choose 5 bouquets, Beth should choose 4
bouquets, and Carrie takes the remaining 3 bouquets. How many ways can
they distribute these 12 bouquets?

2.5 The number of ordered subsets of a given

size

Now, we move to the world of Formula 1. During Formula 1 racing some cars
obtain points (usually the cars finishing the race first), and these points are
accumulated during the whole season. This is how the order in the Driver’s
Championship is based on.

Between 1960 and 2002 only the first six cars (out of 22) finishing the
race obtained points. The scoring system had changed a lot during these
years, but we concentrate on the fact that some of the drivers obtain points.
Moreover, depending on their place they obtain different points. That is, the
order of the first six cars matter, but the order of all the other cars do not
matter (for the Driver’s Championship).

We are interested in how many possible outcomes exist for the Driver’s
Championship. That is, how many ways can we choose the first 6 cars out
of 22 if their order counts? We can try to count the number of possibilities
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similarly as in Section 2.3, when we counted the number of permutations of
some elements. For the first place 22 cars can arrive. No matter which car
finishes the race first, there will be 21 possible cars to finish the race second.
Then, there will be 20 possible cars to finish the race as the third. Then,
there are 19 possibilities for the fourth place, 18 possibilities for the fifth
place, and finally, there will remain 17 cars who can finish the race as sixth.
Since the order of all the remaining cars does not matter (for the Driver’s
Championship), the number of possibilities for the first six cars is

22 · 21 · 20 · 19 · 18 · 17 = 53 721 360.

Exercise 2.29. Which number is bigger?

22 · 21 · 20 · 19 · 18 · 17 or
22!

16!

Exercise 2.29 can help us to obtain the answer for our question in a dif-
ferent way. Altogether there are 22! possible orders for the 22 cars (this is
the number of permutations of 22 cars). But not all of these are considered
to be different for the Driver’s Championship. In fact, those cases will be
considered the same where the first six are the same (and in the same order).
Just as we did in Section 2.4 for counting the anagrams, we can group to-
gether those permutations of the 22 cars, which are the same for the Driver’s
Championship, that is, where the order of the first six cars is the same. We
can name every group with the order of the first six cars. Thus, we are
interested in the number of groups we have. In one group there are those
permutations, where the order of the first six cars is the same, thus they only
differ in the last 22 − 6 = 16 cars. There are 16! possible permutations of
the last 16 cars, therefore every group contains 16! orderings of the 22 cars.
Hence, the number of possibilities (for the Driver’s Championship) is

22!

(22− 6)!
=

22!

16!
= 22 · 21 · 20 · 19 · 18 · 17 = 53 721 360.

Let us try to generalize the result. We considered a set of 22 cars (the
racing cars). We were interested in the first six arriving. That is, we were
interested in the number of 6-element sets, but the order of those 6 elements
counted, as well. Thus, we may generalize our results in the following way.
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Theorem 2.9. Let S be a set of n elements, and let 0 ≤ k ≤ n be an integer.
The number of ordered k-element sets is

n · (n− 1) · · · · · (n− k + 1) =
n!

(n− k)!
.

Proof. For the first element we have n possibilities to choose from. No matter
which element we chose first, there will be (n − 1) possibilities to choose a
second element. Then, there will be (n − 2) possibilities to choose a third
element, etc. Finally, there will remain (n− k+1) possibilities to choose the
kth element, as we have already chosen (k − 1) elements. Thus the number
of the ordered k-element subsets is

n · (n− 1) · · · · · (n− k + 1) =
n · (n− 1) · · · · · (n− k + 1) · (n− k)!

(n− k)!

=
n!

(n− k)!
.

Exercise 2.30. Prove Theorem 2.9 using the other method.

Exercise 2.31. (a) Between 2003 and 2009, the first eight cars finishing
the race counts for the Driver’s Championship. How many possibilities
are there for the first eight cars (out of 22)?

(b) Nowadays, the first ten cars finishing the race counts for the Driver’s
Championship. How many possibilities are there for the first ten cars
(out of 22)?

Exercise 2.32. There are n people at a running competition. In the end,
only the first k arrivals are recorded into a final list. How many possible lists
exist if

(a) n = 10 and k = 3,

(b) n = 12 and k = 3,

(c) n = 10 and k = 4,
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(d) n = 12 and k = 4,

(e) n = 8 and k = 5,

(f) n = 10 and k = 5?

2.6 The number of subsets of a given size

In the Hungarian lottery there are 90 balls in a urn (numbered from 1 to 90).
Five numbers of them are chosen in an arbitrary way (usually a celebrity
blindly pulls out five balls without putting them back). The order in which
the numbers are chosen does not matter, only the chosen numbers themselves
(in fact, at the end of the show, the numbers are repeated in their increasing
order). People can guess in advance what the five chosen numbers will be,
and they can win money depending on how many numbers they managed
to guess correctly. The jackpot goes to those, who manage to guess all five
numbers properly.

Let us imagine the situation that we want to win the jackpot. How many
lottery tickets should we buy for that? Or, in other words, how many ways
can the celebrity choose five numbers out of 90? Let us consider first the case,
if the order of the five chosen numbers mattered. We have already solved
this problem in Theorem 2.9 of Section 2.5. There are 90 possibilities to
choose the first number, then there are 89 possibilities to choose the second
number, 88 possibilities to choose the third number, 87 possibilities to choose
the fourth number, and finally, there are 86 possibilities to choose the fifth
number. Thus the number of possibilities to choose five numbers such that
their order counts is

90 · 89 · 88 · 87 · 86 = 5 273 912 160.

Now, to count the number of unordered possibilities we can try the same
trick we successfully implemented in Section 2.4 and 2.5. That is, let us
group together those chosen five numbers, where the five numbers are the
same, they only differ in the order they were chosen. Let us name these
groups with the chosen five numbers. For example, there will be a group
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called ‘1, 2, 3, 4, 5’, which contains all possible choosing of 1, 2, 3, 4, 5,
in any order. Similarly, there will be a group called ‘13, 42, 51, 66, 90’
containing all possible choosing of these five numbers. For example, if the
numbers chosen were (in order) ‘42, 13, 90, 66, 51’, then they are put into
the group ‘13, 42, 51, 66, 90’. Similarly, the numbers ‘51, 66, 90, 13, 42’
are put into the group ‘13, 42, 51, 66, 90’, as well. We are interested in the
number of groups. To count the number of groups, we first count the number
of ordered five numbers in one group. How many elements does the group
‘13, 42, 51, 66, 90’ have? This group contains all possible orders in which one
can choose these five numbers. This is the number of permutations of these
five numbers. That is, there are 5! = 120-many orders in the group ‘13, 42,
51, 66, 90’. Similarly, there are 5! = 120-many orders in every other group.
Therefore the number of groups (and the number of possible ways to choose
five numbers out of 90) is

90 · 89 · 88 · 87 · 86
5!

=
5 273 912 160

120
= 43 949 268.

Exercise 2.33. Which number is bigger?

90 · 89 · 88 · 87 · 86
5!

or
90!

5! · 85!

The number occurring in Exercise 2.33 is so important, that it has its
own name. We denote it by

(
90
5

)
(read as ‘90 choose 5’), and it equals(

90

5

)
=

90!

5! · 85!
.

In general, we can define
(
n
k

)
similarly.

Definition 2.10. Let
(
n
k

)
(read ‘n choose k’) be(

n

k

)
=

n!

k! · (n− k)!
.

These numbers are called binomial coefficients.

Exercise 2.34. Calculate the numbers
(
n
k

)
for n = 0, 1, 2, 3, 4, 5, 6 and k =

0, 1, . . . , n.
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Usually, it is easier to calculate
(
n
k

)
as in the left hand side of Exercise 2.33.

Proposition 2.11. For n ≥ k ≥ 1 we have(
n

k

)
=

n · (n− 1) · · · · · (n− k + 1)

k!
.

Proof. The following calculation shows that the two sides are equal:(
n

k

)
=

n!

k! · (n− k)!
=

n · (n− 1) · · · · · (n− k + 1) · (n− k)!

k! · (n− k)!

=
n · (n− 1) · · · · · (n− k + 1)

k!
.

Now, we are ready to generalize our results on the lottery. With that
argument we proved that the number of possibilities to choose 5 numbers
out of 90 is

(
90
5

)
. This is the same as to say that the number of 5-element

subsets of a 90-element set is
(
90
5

)
.

Theorem 2.12. The number of k-element subsets of an n-element set is

(2.1)
(
n

k

)
=

n!

k! · (n− k)!
=

n · (n− 1) · · · · · (n− k + 1)

k!
.

Proof. The number of k-element ordered subsets is n!
(n−k)! by Theorem 2.9. To

count the number of unordered k-element subsets we group together those
k-element subsets, which differ only in their order. That is, every group
contains different orderings of the same k elements. Every group contains
k!-many orderings, since k! is the number of possible permutations of those
k elements. Therefore the number of groups (and the number of k-element
subsets) is

n!
(n−k)!

k!
=

n!

k! · (n− k)!
=

(
n

k

)
.

By Proposition 2.11 this is the same number as

n · (n− 1) · · · · · (n− k + 1)

k!
.
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In light of Theorem 2.12, the binomial coefficients are important numbers.
Therefore, we spend some time to know them a little bit better. It is easy to
calculate (and remember) some particular binomial coefficients.

Exercise 2.35. What is
(
n
0

)
,
(
n
1

)
,
(
n
2

)
,
(

n
n−2

)
,
(

n
n−1

)
and

(
n
n

)
in general?

Moreover, it is pretty straightforward from formula (2.1) that

Proposition 2.13. For non-negative integers n ≥ k we have(
n

k

)
=

(
n

n− k

)
.

Proof. Rather than simply substituting into (2.1), we give a combinatorial
argument. That is, we give a combinatorial meaning to both sides of the
equation, that is, they both will count the same thing. Naturally, if they
count the same thing, they must be equal.

The left hand side counts the number of k-element subsets of an n-element
set. The right hand side counts the number of (n− k)-element subsets of an
n-element set. We prove that there are the same number of k-element subsets
as (n− k)-element subsets. Let S be an n-element set, and let us map every
k-element subset into its complementer. This way, we map every k-element
subset to an (n−k)-element subset. Moreover, different k-element subsets are
mapped to different (n− k)-element subsets. Finally, every (n− k)-element
subsets is mapped from a k-element subset (in fact, it is mapped from its
complementer). Therefore this map is a one-to-one correspondence between
the k-element subsets and the (n− k)-element subsets.

We can think about this proof in the following way. Choosing k elements
out of n elements is the same as not choosing (n − k)-elements. That is,
deciding which (n − k) elements will not be chosen is the same as deciding
which k elements will be chosen. We can ‘not choose’ (n − k) elements in(

n
n−k

)
-many ways, which therefore must be the same as the number of choices

to choose k elements, which is
(
n
k

)
.

Finally, let us conclude this Section by calculating the sum of the binomial
coefficients.
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Exercise 2.36. Calculate the sum

n∑
k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
for n = 0, 1, 2, 3, 4, 5, 6.

After solving Exercise 2.36, one can conjecture on the general case:

Proposition 2.14. For every positive integer n we have

n∑
k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
= 2n.

Proof. Again, we give a combinatorial argument. The right hand side counts
the number of subsets of an n-element set. We prove that the left hand side
counts the same, only in a different manner. It counts the number of subsets
in a way that first we choose how many elements the subset will have, and
then we count the number of subsets with that many elements.

That is, a subset of an n-element set can have 0, 1, 2, . . . , (n − 1) or
n elements. An n-element set has

(
n
0

)
-many 0-element subsets,

(
n
1

)
-many

1-element subsets,
(
n
2

)
-many 2-element subsets, etc.,

(
n

n−1

)
-many (n − 1)-

element subsets, and
(
n
n

)
-many n-element subsets. That is, the number of

subsets the n-element set has is(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
.

Alternatively, we can say that an n-element set can have k-element subsets
for 0 ≤ k ≤ n. An n-element set has exactly

(
n
k

)
-many k-element subsets,

hence it has
∑n

k=0

(
n
k

)
-many subsets altogether.

As the left hand side and the right hand side count the same thing (the
number of subsets of an n-element set), they must be equal.

Exercise 2.37. For what n does n divide
(
n
2

)
?

Exercise 2.38. Prove that n2 =
(
n+1
2

)
+
(
n
2

)
for n ≥ 2.
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2.7 Distributing money

Three pirates (Anne Bonney, Black Bellamy and Calico Jack) raid a small
ship. They take all the treasure they can find, which is seven gold pieces
altogether. Afterwards, they would like to distribute the loot among them-
selves. They only have one rule: since everybody was useful during the raid,
everyone should receive at least 1 gold piece. How many ways can they dis-
tribute the seven gold pieces? Gold pieces are identical, it does not matter
who gets which gold piece. It only matters how many gold pieces each pirate
gets.

One way to solve this problem is of course to write down all possible
distributions. Let us list the possibilities by considering the amount of gold
pieces received by the highest rewarded pirate. If everyone needs to get at
least one gold piece, then nobody can have more than five gold pieces. In
fact, if somebody gets five gold pieces, then the other two will have two
gold pieces to distribute, which they can only do by giving one gold piece
to each of them. This is three possibilities (depending on who receives the
five gold pieces). If the pirate in the highest regard gets four gold pieces,
then the other two pirates will have three gold pieces to distribute. They
can only distribute it as two-one. This altogether amounts to 6 possibilities:
3 possibilities on who gets four gold pieces, then in each case 2 possibilities
on who gets two gold pieces, that is, 3 · 2 possibilities. (Note that this is
the number of permutations of the three pirates.) Finally, if the highest
reward is three gold pieces, then the other two pirates can distribute the
remaining four gold pieces in two different ways: either one of them gets
three gold pieces, and the other gets one, or both get two gold pieces. Both
distributions amount to 3 possibilities altogether. In the first case there are 3
possibilities to choose who gets one gold piece (and the other two gets three
gold pieces each). In the second case there are 3 possibilities to choose who
gets three gold pieces (and the other two gets two gold pieces each). Table 2.4
summarizes the 15 possible distributions.
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Table 2.4: Possibilities to distribute 7 gold pieces among three pirates so that
everyone gets at least one gold piece.

Anne Bonney Black Bellamy Calico Jack

5 1 1
1 5 1
1 1 5
4 2 1
4 1 2
2 4 1
1 4 2
2 1 4
1 2 4
3 3 1
3 1 3
1 3 3
3 2 2
2 3 2
2 2 3

This is all well and good, but if next time the pirates raid a much bigger
ship and find a treasure chest full of gold on board, we will have a much
harder time counting the possibilities for them to distribute the gold. It
would be nice to obtain the final answer by some combinatorial reasoning,
which we can apply for different number of gold pieces (or different number
of pirates). We give such a method in the following.

Imagine that the pirates put the gold pieces in a line, like this:

��
��
��
��
��
��
��
��
��
��
��
��

��
��

Now, they want to divide it into three parts: a leftmost part, a middle part
and a rightmost part. The leftmost part will go to Anne Bonney, the middle
part is for Black Bellamy, and Calico Jack takes the rightmost part. For
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example if Anne Bonney gets one gold piece, Black Bellamy gets two gold
pieces, and Calico Jack takes four, then they divide the seven gold pieces like
this:

��
��
��
��
��
��
��
��
��
��
��
��
��
��

That is, they use two sticks to divide the seven gold pieces into three parts.
What is left from the first stick is for Anne Bonney, what is between the
two sticks is for Black Bellamy, and everything right from the second stick
is taken by Calico Jack. Where can they put the sticks? They can put the
sticks between gold pieces. They cannot put a stick before the first gold
piece, because then Anne Bonney would not get any gold pieces. Similarly,
they cannot put a stick after the last gold piece, because Calico Jack needs
to receive at least one gold piece. Finally, they cannot put the two sticks
between the same two gold pieces, because Black Bellamy needs to get at
least one gold piece. Thus, they need to put the two sticks somewhere in the
spaces between the gold pieces, but they cannot put the two sticks between
the same two gold pieces. That is, they need to find which two places they put
sticks to. There are 6 places between the seven gold pieces, and they need to
find two, where they put the two sticks. This can be done in

(
6
2

)
= 6·5

2
= 15-

many ways. This combinatorial argument works in general, when we need to
distribute k gold pieces among n pirates. In general, n pirates would need
n−1 sticks to divide the gold pieces to n parts, and there will be k−1 places
between k gold pieces. Thus we obtain

Theorem 2.15. Assume n pirates want to distribute k gold pieces among
themselves (for some k ≥ n) such that everybody gets at least one gold piece.
They can do this in

(
k−1
n−1

)
-many ways.

Exercise 2.39. Prove Theorem 2.15 precisely.

After having found that they have 15 possible ways to distribute seven
gold pieces among themselves, the three pirates divide the gold pieces in
some way and continue sailing the oceans. Next, they encounter a somewhat
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bigger ship than last time, and they find a treasure chest with 10 gold pieces
in it. All of them needed to do quite a bit of work for getting the treasure
chest (lot of sword-fighting for all three of them), therefore this time they
want to distribute the money so that everyone receives at least two gold
pieces. How many ways can they distribute the money now?

Again, we can solve this problem by writing down all possible distribu-
tions, like before. As before, let us list the possibilities by considering the
amount of gold pieces received by the highest rewarded pirate. If everyone
needs to get at least two gold pieces, then nobody can have more than six
gold pieces. In fact, if somebody gets six gold pieces, then the other two will
have four gold pieces to distribute, which they can only do by giving two gold
pieces to each of them. This is three possibilities (depending on who receives
the six gold pieces). If the pirate in the highest regard gets five gold pieces,
then the other two pirates will have five gold pieces to distribute. They can
only distribute it as three-two. This altogether amounts to 6 possibilities: 3
possibilities on who gets five gold pieces, then in each case 2 possibilities on
who gets three gold pieces, that is, 3 · 2 possibilities. Finally, if the highest
reward is four gold pieces, then the other two pirates can distribute the re-
maining six gold pieces in two different ways: either one of them gets four
gold pieces, and the other gets two, or both get three gold pieces. Both
distributions amounts to 3 possibilities altogether. In the first case there are
3 possibilities to choose who gets two gold pieces (and the other two gets
four gold pieces each). In the second case there are 3 possibilities to choose
who gets four gold pieces (and the other two gets three gold pieces each).
Table 2.5 summarizes the 15 possible distributions.

Table 2.5: Possibilities to distribute 10 gold pieces among three pirates so
that everyone gets at least two gold pieces.

Anne Bonney 6 2 2 5 5 3 2 3 2 4 4 2 4 3 3
Black Bellamy 2 6 2 3 2 5 5 2 3 4 2 4 3 4 3
Calico Jack 2 2 6 2 3 2 3 5 5 2 4 4 3 3 4
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Here, we received exactly the same number of distributions as for the
earlier case, when the three pirates needed to distribute 7 gold pieces, and
everybody needed to get at least one. This can hardly be a coincidence.
Somehow, we should be able to reduce the new problem to the earlier prob-
lem. The main difference is that now every pirate needs to get at least two
gold pieces instead of one. This can be easily remedied: everyone takes one
gold piece at the very beginning. Then seven gold pieces remain (10 − 3),
and everyone needs to get at least one more. And this is now exactly the
same problem as before. Again, the argument works in general: if there are
n pirates and k gold pieces, and everybody needs to get at least two gold
pieces, then first every pirate takes one gold piece. This way, everyone needs
to get one more gold piece, and they will have k−n gold pieces to distribute
further. Applying Theorem 2.15 we can prove

Proposition 2.16. Assume n pirates want to distribute k gold pieces among
themselves (for some k ≥ 2n) such that everybody gets at least two gold
pieces. They can do this in

(
k−n−1
n−1

)
-many ways.

Exercise 2.40. Prove Proposition 2.16 precisely.

The three pirates continued to raid ships. Next time they found a small
boat with a fisherman and only four gold pieces. They, again, want to dis-
tribute these gold pieces among themselves. But this time they do not want
to impose any conditions on the distributions. It may be possible that some-
body does not receive any gold pieces, even that somebody takes all the gold.
How many ways can they distribute the four gold pieces among themselves?

After the previous two exercises, it is not too difficult to find all the
possibilities. There are three possibilities corresponding to the distribution
where one of them gets all four gold pieces (three possibilities depending
on who gets all the gold). If one of them gets three gold pieces, then the
remaining one gold piece goes to one of the remaining pirates. There are 6
such possibilities: 3 choices on who gets three gold pieces, and for each choice
there are 2 choices on who of the remaining two pirates gets 1 gold piece (and
the last pirate does not get any gold pieces). If the highest rewarded pirate
gets two gold pieces, then the remaining two gold pieces can be distributed
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among the two remaining pirates in two different ways: in the first case one
of them gets both gold pieces, and the other gets none, in the second case
both of the remaining pirates gets one gold piece each. In the first case they
have 3 choices on who gets no gold pieces (and the other two pirates get two
gold pieces each), in the second case they have 3 choices on who gets two
gold pieces (and the other two pirates get one gold piece each). Table 2.6
summarizes all 15 possibilities for distributing four gold pieces among the
three pirates.

Table 2.6: Possibilities to distribute 4 gold pieces among three pirates.

Anne Bonney 4 0 0 3 3 1 0 1 0 2 2 0 2 1 1
Black Bellamy 0 4 0 1 0 3 3 0 1 2 0 2 1 2 1
Calico Jack 0 0 4 0 1 0 1 3 3 0 2 2 1 1 2

Again, by applying some easy trick we can find the connection between
this distribution problem and the first one (where each pirate wanted to get
at least one gold piece from the loot). Let us try to reduce this problem to
the other one. The only difference is that with the first distribution problem
every pirate needed to get at least one gold piece, and now there is no such
condition. Let us create a situation where this condition arises naturally!
For example, if every pirate puts one gold piece from their own pocket to the
treasure chest. Then there would be 7 gold pieces in the treasure chest, but
every pirate would want to get at least one gold piece (they would want to
get back at least what they put in). This is exactly the same distribution
problem as the first was, and thus they must have the same answer, as well.

This argument can be applied in general:

Theorem 2.17. There are
(
n+k−1
n−1

)
=
(
n+k−1

k

)
-many ways for n pirates to

distribute k gold pieces among themselves.

Proof. Let every pirate put one gold piece into the pile of k gold pieces.
This way there will be n + k gold pieces to distribute among themselves,
but now each pirate would need to get at least one gold piece (because they
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want to get back at least the one gold piece they put into the pile). They
can distribute n + k gold pieces among themselves with that condition in(
n+k−1
n−1

)
-many ways by Theorem 2.15. Finally, by the symmetric property of

the binomial coefficients (Proposition 2.13) we have
(
n+k−1
n−1

)
=
(
n+k−1

k

)
.

Finally, our three pirates (Anne Bonney, Black Bellamy and Calico Jack)
raid yet another ship. This time, they find a treasure chest containing seven
gold pieces. But this time, they did not contribute to obtaining the chest
equally. Say, Anne Bonney did not fight with anyone on the ship, while Black
Bellamy fought with one person, and Calico Jack fought with two! Therefore,
they feel it just that from the seven gold pieces Black Bellamy gets at least
one, and Calico Jack gets at least two (they do not impose any condition on
how much Anne Bonney needs to get). How many ways can they distribute
the gold pieces with these conditions?

Once again, we could try to reduce this new problem to one which we
solved already. But this time, we will reduce it to Theorem 2.17 rather than
to Theorem 2.15. Just think about it: it makes more sense to the pirates
to just give first the conditional money to the people that deserve it. That
is, first they pay the one gold piece to Black Bellamy, and two gold pieces
to Calico Jack. Then they will have four gold pieces to distribute among
the three of them, which can be done in

(
4+3−1
3−1

)
=
(
6
2

)
= 15-many ways by

Theorem 2.17.

Exercise 2.41. Write all possibilities where the three pirates distribute seven
gold pieces such that Black Bellamy gets at least one gold piece and Calico
Jack gets at least two gold pieces.

Applying the same argument, we can now phrase the most general theo-
rem of this topic.

Theorem 2.18. Assume n pirates want to distribute k gold pieces among
themselves such that the first pirate gets at least k1 gold pieces, the second
pirate gets at least k2 gold pieces, etc., the kth pirate gets at least kn gold
pieces (where k ≥ k1 + k2 + · · ·+ kn). The number of ways they can do this
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is (
k − k1 − k2 − · · · − kn + n− 1

n− 1

)
.

Proof. First, the pirates pay off all the conditional amounts. That is, the
first pirate immediately gets k1 gold pieces, the second pirate gets k2 gold
pieces, etc., the kth pirate gets kn gold pieces. Then they will have k −
k1 − k2 − · · · − kn gold pieces left to distribute, on which they have no more
conditions. By Theorem 2.17 they have

(
k−k1−k2−···−kn+n−1

n−1

)
-many ways to

do the distribution.

We make two remarks here. First, rather than reducing the problem
again for the first pirate situation (where everybody gets at least one gold
piece), we reduced it to one, which is easier to use. This is quite customary
in Mathematics, that when we have proved a hard result, we simply use it
for similar situations, rather than trying to figure out a similar proof for each
similar case. Second, that the proof works even in the case where some of the
kis are negative. That would represent to a situation where the ith pirate
was so lazy, that he actually hindered the raid, and therefore he should pay
some amount into the loot they obtained.

Exercise 2.42. How many ways can n pirates distribute k gold pieces, if

(a) k = 9, n = 3, and everybody gets at least one gold piece;

(b) k = 8, n = 3;

(c) k = 7, n = 3;

(d) k = 11, n = 3, and everybody gets at least two gold pieces;

(e) k = 9, n = 4, and everybody gets at least one gold piece;

(f) k = 7, n = 4;

(g) k = 12, n = 4, and everybody gets at least two gold pieces;

(h) k = 10, n = 4, and the second pirate gets at least one gold piece, the
third pirate gets at least two gold pieces, and the fourth pirate gets at
least three gold pieces;
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(i) k = 15, n = 4, and the first pirate gets at least one gold piece, the
second pirate gets at least two gold pieces, the third pirate gets at least
three gold pieces, and the fourth pirate gets at least four gold pieces;

(j) k = 15, n = 5, and the first and third pirates get at least one-one
gold piece, and the fourth and fifth pirates get at least three-three gold
pieces?

In the last part of this section, we consider equations with integer solu-
tions. Take for example the equation

(2.2) x+ y + z = 7.

We are not interested in all the solutions, we are only interested in the
number of positive integer solutions. We can of course list them without
any problems. First, we look for solutions x ≥ y ≥ z, then we find all
the solutions. Now, z cannot be bigger than 2, because that would mean
7 = x + y + z ≥ 3z ≥ 3 · 3 = 9 a contradiction. Thus z = 1 or z = 2.
If z = 2, then x ≥ y ≥ 2, as well. Now, if y ≥ 3, then x ≥ 3, and
7 = x + y + z ≥ 2y + z ≥ 2 · 3 + 2 = 8 is a contradiction. Thus if z = 2

then y = 2, and then x = 3 from (2.2). If z = 1, then y cannot be bigger
than 3 (then x ≥ y ≥ 4, and thus 7 = x + y + z ≥ 2y + z ≥ 2 · 4 + 1 = 9 a
contradiction). If y = 3 then x = 3, if y = 2 then x = 4, and if y = 1 then
x = 5. That is, the positive integer solutions of (2.2) are

(5, 1, 1), (4, 2, 1), (3, 3, 1) and (3, 2, 2).

There are three solutions of type (5, 1, 1) depending on which variable equals
to 5. There are six solutions of type (4, 2, 1): three choices to determine
which variable equals to 4 and then two choices for which of the remaining
two variables is 2. There are three solutions of type (3, 3, 1) depending on
which variable equals to 1, and there are three solutions of type (3, 2, 2)

depending on which variable equals to 3. That is, there are 15 positive
integer solutions to (2.2). Table 2.7 collects all 15 solutions.
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Table 2.7: Positive integer solutions of x+ y + z = 7.

x 5 1 1 4 4 2 1 2 1 3 3 1 3 2 2
y 1 5 1 2 1 4 4 1 2 3 1 3 2 3 2
z 1 1 5 1 2 1 2 4 4 1 3 3 2 2 3

Now, these solutions in Table 2.7 look exactly the same as the distribu-
tions of 7 gold pieces among three pirates such that each of them gets at least
one gold piece (see Table 2.4). This is not a coincidence. Say, Anne Bonney
gets x gold pieces, Black Bellamy gets y gold pieces, and Calico Jack gets z
gold pieces. Then altogether they take all 7 gold pieces, that is, x+y+z = 7.
Moreover, each of them needs to get at least one gold piece, that is, x ≥ 1,
y ≥ 1, z ≥ 1. Thus the positive integer solutions of the equation x+y+z = 7

correspond to the distributions of 7 gold pieces among three pirates such that
each of them gets at least one gold piece. This argument works in the general
case, as well.

Corollary 2.19. Consider the equation

(2.3) x1 + x2 + · · ·+ xn = k.

The number of integer solutions of (2.3) for which x1 ≥ k1, x2 ≥ k2, . . . ,
xn ≥ kn is (

k − k1 − k2 − · · · − kn + n− 1

n− 1

)
.

Proof. The integer solutions of (2.3) correspond to gold distribution. Assume
there are n pirates distributing k gold pieces among themselves such that the
first pirate gets at least k1 gold pieces, the second pirate gets at least k2 gold
pieces, etc. Assume that the first pirate gets x1 gold pieces, the second pirate
gets x2 gold pieces, etc. Then each distribution of the gold pieces corresponds
to an integer solution of (2.3), and each integer solution of (2.3) corresponds
to a distribution. By Theorem 2.18 the number of distributions is(

k − k1 − k2 − · · · − kn + n− 1

n− 1

)
.
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and so is the number of integer solutions of (2.3).

Exercise 2.43. How many integer solutions do the following equations have?

(a) x+ y + z = 9, where x ≥ 1, y ≥ 1, z ≥ 1;

(b) x+ y + z = 8, where x ≥ 0, y ≥ 0, z ≥ 0;

(c) x+ y + z = 7, where x ≥ 0, y ≥ 0, z ≥ 0;

(d) x+ y + z = 11, where x ≥ 2, y ≥ 2, z ≥ 2;

(e) w + x+ y + z = 9, where w ≥ 1, x ≥ 1, y ≥ 1, z ≥ 1;

(f) w + x+ y + z = 7, where w ≥ 0, x ≥ 0, y ≥ 0, z ≥ 0;

(g) w + x+ y + z = 12, where w ≥ 2, x ≥ 2, y ≥ 2, z ≥ 2;

(h) w + x+ y + z = 10, where w ≥ 0, x ≥ 1, y ≥ 2, z ≥ 3;

(i) w + x+ y + z = 15, where w ≥ 1, x ≥ 2, y ≥ 3, z ≥ 4;

(j) v + w + x+ y + z = 15, where v ≥ 1, w ≥ 0, x ≥ 1, y ≥ 3, z ≥ 3.

Exercise 2.44. Rudolf and her two sisters (Ágnes and Bea) like the famous
Hungarian Túró Rudi dessert very much. Their mother gives Rudolf money
and tells him to buy 10 pieces of Túró Rudi. She has only one condition:
since Ágnes likes the Danone brand, Bea likes the Milli brand, and Rudolf
likes the Pöttyös brand, he is supposed to buy at least one from each brand.
How many ways can Rudolf buy 10 Túró Rudi desserts this way?

2.8 Balls from urns

In this Section we apply our knowledge on counting to solve the problem of
pulling balls out of a urn. In the usual Hungarian lottery, 5 numbers are
chosen randomly from 90. That is, there are 90 balls numbered from 1 to
90, and 5 balls are chosen such that none of them will be put back after
pulling them out, and in the end the order they have been chosen is not
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interesting, only what the five numbers are. This problem can have four
different versions, depending on whether or not the order of the chosen balls
counts, and whether or not we put back a ball into the urn after pulling it
out.

Let us see the four different cases. If the order counts and we allow
repetition, then the answer is clearly 905: for each of the five choices we have
90 balls to choose from. (This is the same problem as with the sequences
in Section 2.1.) If we do not allow repetition (but the order counts), then
this is the same problem as with the Formula 1 competition (Section 2.5):
for first choice we have 90 balls to choose from, for second choice we have
89 balls to choose from (because we cannot choose what we chose first), for
third choice we have 88 balls to choose from (because we cannot choose what
we chose first or second), for fourth choice we have 87 balls to choose from
(because we cannot choose what we chose first, second or third), finally, for
fifth choice we have 86 balls to choose from (because we cannot choose what
we chose before). That is, the number of choices we have is

90 · 89 · 88 · 87 · 86 =
90!

85!
=

90!

(90− 5)!
.

Now, consider the case where the order does not count and we do not allow
repetition. Then, each of those cases are considered to be the same, where
we chose exactly the same 5 balls, only in different orders. Five balls have
5!-many orders, thus the number of choices for choosing 5 balls out of 90
without any repetition such that the order does not count is

90!

85! · 5!
=

(
90

5

)
.

This is the same problem we discussed in Section 2.6. Finally, consider the
last case: choose 5 balls out of 90 such that repetition is allowed, and the
order does not count. We claim that this is the same problem as 90 pirates
distributing 5 gold pieces among themselves (Section 2.7). Indeed, for every
gold distribution we can consider to choose those balls which have the same
number as the pirates who received gold pieces, exactly as many times as the
number of gold pieces they received. For example, if the first pirate received
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3 gold pieces and the tenth pirate received two, this corresponds to choosing
the numbers 1, 1, 1, 10, 10. Similarly, for every choice of numbers we have a
distribution: a pirate gets as many gold pieces as the number of times its
corresponding ball has been chosen. Thus, by Theorem 2.18 the number of
possibilities to choose 5 numbers out of 90 if repetition is allowed and the
order does not count is(

90 + 5− 1

90− 1

)
=

(
90 + 5− 1

5

)
.

Table 2.8 collects these results.

Table 2.8: Choosing 5 balls out of 90

order counts order does not count

no repetition 90 · 89 · 88 · 87 · 86
(
90
5

)
with repetition 905

(
90+5−1
90−1

)
=
(
90+5−1

5

)

These ideas can of course be generalized. Say, we have n numbered balls
in a urn, and we want to choose k out of them, and we are interested in
the number of possible ways to do this. There are four different problems
according to whether or not the order of the chosen balls counts, and whether
or not we put back a ball into the urn after pulling it out. Let us consider
the four problems one by one.

If the order counts and we allow repetition, then the answer is clearly nk:
for each of the k choices we have n balls to choose from, as in Section 2.1.
If we do not allow repetition (but the order counts), then this is the same
problem as with the Formula 1 competition (Section 2.5): for first choice we
have n balls to choose from, for second choice we have (n−1) balls to choose
from (because we cannot choose what we chose first), etc. For the final (e.g.
kth) choice we have (n − k + 1) balls to choose from (because we cannot
choose those (k − 1) balls what we chose before). That is, the number of
choices we have is

n·(n−1)·· · ··(n−k+1) =
n · (n− 1) · · · · · (n− k + 1) · (n− k)!

(n− k)!
=

n!

(n− k)!
.
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Note, here that the first formula gives a correct answer if k > n, that is,
when there is no way we can choose k balls out of n. Now, consider the case
where the order does not count and we do not allow repetition. Then, each of
those cases are considered to be the same, where we chose exactly the same
k balls, only in different orders. So k balls have k!-many orders, thus the
number of choices for choosing k balls out of n without any repetition such
that the order does not count is

n!

(n− k)! · k!
=

(
n

k

)
.

Again, this answer is correct if k ≤ n, otherwise the answer is 0. This is the
same problem we discussed in Section 2.6. Finally, consider the last case:
choose k balls out of n such that repetition is allowed, and the order does
not count. This is the same problem as n pirates distributing k gold pieces
among themselves (Section 2.7). Indeed, for every gold distribution we can
consider to choose those balls which have the same number as the pirates who
received gold pieces, and exactly as many times as the number of gold pieces
they received. Similarly, for every choice of balls we have a distribution: a
pirate gets as many gold pieces as the number of times its corresponding
ball has been chosen. Thus, by Theorem 2.18 the number of possibilities to
choose k numbers out of n if repetition is allowed and the order does not
count is (

n+ k − 1

n− 1

)
=

(
n+ k − 1

k

)
.

Table 2.9 collects these results in a condensed form.

Table 2.9: Choosing k balls out of n

order counts order does not count

no repetition (n < k) 0 0

no repetition (n ≥ k) n!
(n−k)!

(
n
k

)
with repetition nk

(
n+k−1

k

)
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Exercise 2.45. An urn contains n numbered balls. How many ways can we
choose k balls out of the urn if

(a) n = 9, k = 3, with repetition, the order does not count;

(b) n = 3, k = 9, with repetition, the order does not count;

(c) n = 10, k = 5, without repetition, the order counts;

(d) n = 5, k = 10, without repetition, the order counts;

(e) n = 45, k = 6, without repetition, the order does not count;

(f) n = 6, k = 45, without repetition, the order does not count;

(g) n = 100, k = 10, with repetition, the order counts;

(h) n = 10, k = 100, with repetition, the order counts.



Chapter 3

Proof techniques

3.1 Proofs by induction

In mathematics one often uses induction to prove general statements. Let
us see how this argument works. Suppose we have a statement S(n) which
depends on n. When we apply induction we prove that S(n0) is true for the
smallest possible value n0. Then we show that if the statement is true for all
possible values less than n, then the statement is also true for n. Finally, we
conclude that the statement is true for all n ≥ n0. There is a very similar
notion called recursion. For example we can define n! as follows

n! =

1 if n = 1,

n · (n− 1)! if n > 1.

The basic idea is that we can compute e.g. 100! if we have computed 99!,
98!, . . ., 1!. Induction works in the same way, if we can prove a statement for
certain smaller instances, then we can prove it for large values as well. More
about recursion will follow in Chapter 5.

Now we study induction in more detail.

Theorem 3.1 (Mathematical Induction I). Let S(n) be a statement depend-
ing on n ∈ N. Suppose that

(a) S(1) is true,
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(b) if S(k) is true for some k ∈ N, then S(k + 1) is true.

Then S(n) is true for all n ∈ N.

Proof. Suppose that the statement S(n) is false for some n ≥ 1. Denote by
m the smallest such value. We have that m > 1, since by part (a) we know
that S(1) is true. Since m is as small as possible, S(k) is true for 1 ≤ k < m.
As a special case we have that S(m − 1) is true. From part (a) and (b)

one obtains that the statement is true for S(m − 1 + 1) = S(m). Thus the
assumption that S(n) is false for same n ≥ 1 is false.

Let us consider a simple example. Let S(n) be the statement that 7
divides 8n − 1. First we do some numerical experiments

n 8n − 1

1 7 = 1 · 7
2 63 = 9 · 7
3 511 = 73 · 7

that is, the statement is true for n ∈ { 1, 2, 3 }. Hence part (a) of the theorem
is fulfilled. Assume that S(k) is true for some k ∈ N. It remains to be proved
that S(k + 1) is true. We have that S(k) is true, that is, 7 divides 8k − 1.
Hence there exists an integer A such that 8k − 1 = 7 · A. We would like to
prove that 8k+1 − 1 is a multiple of 7 as well. We try to express 8k+1 − 1

using 8k − 1. A natural idea is to multiply the equation 8k − 1 = 7 ·A by 8:

8(8k − 1) = 7 · A · 8,

that is,
8k+1 − 8 = 7 · A · 8.

Now we add 7 to obtain the right form on the left-hand side:

8k+1 − 1 = 7 · A · 8 + 7 = 7(8A+ 1).

It means that S(k + 1) is true since we got that 8k+1 − 1 is divisible by 7.
Another area where induction can often be applied is proving mathemat-

ical identities. Now we prove that the sum of the first n positive integers is
n(n+1)

2
. Let us compute the sum of the first n integers for n ∈ { 1, 2, 3, 4, 5 }
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n
∑n

i=1 i

1 1 = 1·2
2

2 1 + 2 = 2·3
2

3 1 + 2 + 3 = 3·4
2

4 1 + 2 + 3 + 4 = 4·5
2

5 1 + 2 + 3 + 4 + 5 = 5·6
2

So it seems that the formula is correct. However, we have not proved the
statement, we only checked that the statement is correct for n ∈ { 1, 2, 3, 4, 5 }.
Here S(n) is the statement that the sum of the first n positive integers is
n(n+1)

2
. We have that S(1) is true. Assume that S(k) is true for some k ≥ 1,

that is,
k∑

i=1

i =
k(k + 1)

2
.

We have to prove that S(k+1) is true. That is, we have to consider the sum
of the first k + 1 integers, which is

k+1∑
i=1

i = 1 + 2 + . . .+ k + (k + 1) = (1 + 2 + . . .+ k) + (k + 1).

By the induction hypothesis

1 + 2 + . . .+ k =
k(k + 1)

2
.

Therefore we get

k+1∑
i=1

i =
k(k + 1)

2
+ (k + 1) =

k2 + k + 2k + 2

2
=

(k + 1)(k + 2)

2
.

Thus S(k + 1) is true and we proved that the sum of the first n integers is

n(n+ 1)

2

for all n ∈ N. (Note, that we have proved this identity with other methods
in Proposition 2.1.)

There are statements which are false for certain small values, but for large
values they hold. You can find such problems in the following section related
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to linear Diophantine equations. So it is useful to state the above theorem
in a different form as well. We omit the proof since it is very similar to the
proof of the previous theorem.

Theorem 3.2 (Mathematical Induction II). Let S(n) be a statement depend-
ing on n ∈ N. Suppose that

(a) S(n0) is true,

(b) if S(k) is true for some n0 ≤ k ∈ N, then S(k + 1) is true.

Then S(n) is true for all n0 ≤ n ∈ N.

As an application we prove that 3n > n3 + 3 for all n ≥ 4. It is easy to
see that the statement is false for n = 1. We have 31 and 13 +3 = 4, that is,
the inequality does not hold. In this problem n0 = 4, so the first step is to
prove that

34 > 43 + 3.

Here we have 81 on the left-hand side and 67 on the right-hand side, hence
S(n0) = S(4) is true. Assume that S(k) is true for some 4 ≤ k ∈ N. So the
induction hypothesis is that

3k > k3 + 3.

We need to show that S(k + 1) is true, that is,

3k+1 > (k + 1)3 + 3.

From the induction hypothesis we get

3k+1 > 3k3 + 9.

If we can prove that 3k3 + 9 > (k + 1)3 + 3 for k ≥ 4, then S(k + 1) follows.
We rewrite the inequality 3k3 + 9 > (k + 1)3 + 3 as follows:

2k3 − 3k2 − 3k + 5 > 0.

It is sufficient to show that k(2k2 − 3k − 3) ≥ 0 for k ≥ 4. It is enough to
prove that k(2k− 3) ≥ 3 for k ≥ 4. We have that k ≥ 4 so 2k− 3 ≥ 5, hence
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the product k(2k−3) is at least 20. We obtained that 3k3+9 > (k+1)3+3,

so we conclude that S(k + 1) is true, therefore 3n > n3 + 3 for all n ≥ 4.
We provide a third version of the original theorem about induction.

Theorem 3.3 (Mathematical Induction III). Let S(n) be a statement de-
pending on n ∈ N. Let m0, n0 ≥ 1. Suppose that

(a) S(m0), S(m0 + 1) . . . , S(m0 + n0 − 1) are true,

(b) if S(k− n0 +1), . . . , S(k) are true for some m0 + n0− 1 ≤ k ∈ N, then
S(k + 1) is true.

Then S(n) is true for all m0 ≤ n ∈ N.

Now we apply induction to prove certain inequalities. Let {Tn } be a
sequence defined by T1 = T2 = T3 = 1 and Tn = Tn−1 + Tn−2 + Tn−3 for
n ≥ 4. We prove by induction that for all positive integer n

Tn < 2n.

Let S(n) be the statement that Tn < 2n. Obviously we have that S(1), S(2), S(3)
are true. Assume that for some 3 ≤ k ∈ N the statements S(k− 2), S(k− 1)

and S(k) are true, that is,

Tk−2 < 2k−2,

Tk−1 < 2k−1,

Tk < 2k.

Consider S(k+1). We should prove the inequality Tk+1 < 2k+1. By definition

Tk+1 = Tk + Tk−1 + Tk−2,

therefore

Tk+1 < 2k + 2k−1 + 2k−2 = 2k−2(4 + 2 + 1) < 8 · 2k−2 = 2k+1.

Thus S(k+ 1) is true and we proved that Tn < 2n for all positive integers n.
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To further demonstrate how to apply the latter version of induction we
consider a problem about an integer sequence. Let { an } be a sequence of
integers such that

a1 = 1,

a2 = 5,

an = 5an−1 − 6an−2 n ≥ 3.

Prove that an = 3n−2n for all n ≥ 1. We apply Mathematical Induction III.
with n0 = 2. To complete part (a) we have to show that S(1) and S(2) are
true. We have that a1 = 1 by definition and the formula yields 31 − 21 = 1,
so S(1) is true. Similarly for S(2), by definition a2 = 5 and the formula gives
32− 22 = 9− 4 = 5. Hence we can go further and consider part (b). Assume
that S(k − 1) and S(k) are true for some 2 ≤ k ∈ N. That is,

ak−1 = 3k−1 − 2k−1,

ak = 3k − 2k.

From the induction hypothesis we should conclude that S(k+1) is true, that
is,

ak+1 = 3k+1 − 2k+1.

Since k+1 ≥ 3, by definition ak+1 = 5ak−6ak−1. Therefore by the induction
hypothesis

ak+1 = 5(3k − 2k)− 6(3k−1 − 2k−1) = 3k+1 − 2k+1.

Thus S(k + 1) is true and we have that an = 3n − 2n for all n ≥ 1.
In the previous examples the first steps were easier, that is, to prove the

statement for k = 1 or for some k = n0. It is not always the case as the
following problems show.

Prove that for any n > 5, it is possible to divide a square into n smaller
squares not necessarily all the same size. It is not obvious that one can apply
induction here. It is easy to figure out that if n = m2, then a solution is not
difficult to find. One considers an m by m grid. To apply induction we have
to solve the problem for small values e.g. n = 6. A solution is given by
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Having a solution for n = 6 one can provide solutions for n = 9, 12, . . .

n = 6 n = 9 n = 12

This process works in general, if we have a solution for some n, then by
subdividing a square into 4 squares we obtain a solution for n+ 3. We have
an argument for part (b) in Mathematical Induction III., namely with n0 = 3.
If S(k− 2), S(k− 1), S(k) is true, then S(k+1) is true (since it follows from
S(k − 2) in this case). It remains to deal with part (a), that is, we have to
show that S(6), S(7) and S(8) are true. We have considered the case n = 6.
Let us find a solution for n = 7. We note that the case n = 4 is easy since
4 is a square. The process we described allows us to construct a solution for
n = 4 + 3 = 7.

n = 4 n = 7

Finally we handle the remaining case, that is, n = 8. Here we have the
solution:
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Exercise 3.1. Prove that 9n − 1 is divisible by 8 for all n ∈ N.

Exercise 3.2. Prove that 52n−1 + 1 is divisible by 6 for all n ∈ N.

Exercise 3.3. Prove the following identity by induction
n∑

i=1

(2i− 1) = n2.

Exercise 3.4. Prove the following identity by induction
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Exercise 3.5. Prove the following identity by induction
n∑

i=1

i3 =

(
n(n+ 1)

2

)2

.

Exercise 3.6. Prove the following identity by induction
n−1∑
i=1

i(i+ 1) =
(n− 1)n (n+ 1)

3
.

Exercise 3.7. Prove the following identity by induction
n∑

i=1

1

i(i+ 1)
=

n

n+ 1
.

Exercise 3.8. Let { an } be a sequence defined by

a1 = 1,

a2 = 8,

an = an−1 + 2an−2, n ≥ 3.
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Prove that

an =
3

2
· 2n + 2 · (−1)n.

Exercise 3.9. Prove by induction that the number(
3−
√
33

2

)n

+

(
3 +
√
33

2

)n

is an integer which is divisible by 3 for all n ∈ N.

Exercise 3.10. Let { an } be a sequence defined by

a1 =
√
2,

an =
√

2 + an−1 n ≥ 2.

Prove by induction that an ≤ 2 for all n ≥ 1.

Exercise 3.11. Prove that for all n ∈ N there exists an n-digit integer

a1a2 . . . an

whose digits are either 1 or 2 and it is divisible by 2n.

Exercise 3.12. Let Fn be a sequence defined by F1 = F2 = 1 and Fn =

Fn−1+Fn−2, n ≥ 3 (this sequence is the so-called Fibonacci sequence). Prove
by induction the following identities.

(a) F1 + F2 + . . .+ Fn = Fn+2 − 1,

(b) F 2
1 + F 2

2 + . . .+ F 2
n = FnFn+1,

(c) F1 + F3 + . . .+ F2n−1 = F2n,

(d) F2 + F4 + . . .+ F2n = F2n+1 − 1.

Exercise 3.13. Prove the following properties of Fibonacci numbers.

(a) Prove that F3n is even for all n ∈ N.
(b) Prove that F5n is divisible by 5 for all n ∈ N.
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3.2 Proofs by contradiction

In this section we study an important tool to prove mathematical theorems.
This tool is called proof by contradiction or indirect proof. There is a simple
logic behind, instead of proving that something must be true, we prove it
indirectly by showing that it cannot be false. We assume that the opposite of
our theorem is true. From this assumption we try to obtain such a conclusion
which is known to be false. This contradiction then shows that our theorem
must be true.

Let us consider a basic example. We try to prove that
√
2 is irrational.

We provide an indirect proof. We assume the opposite of our statement, that
is, that

√
2 is rational. Rational numbers can be written as a

b
for some a ∈ Z

and b ∈ N such that the greatest common divisor of a and b is 1. So we have

√
2 =

a

b
.

Hence a2 = 2b2. It follows that 2 divides a, so a = 2a1 for some a1 ∈ Z.
We substitute this into the equation a2 = 2b2 and we get 4a21 = 2b2. After
dividing by 2 we get 2a21 = b2. So we have that 2 divides b. We have a
contradiction since the greatest common divisor of a and b should be 1, but
we obtained that 2 divides a and also divides b. Hence 2 divides the greatest
common divisor. This contradiction shows that our statement must be true,
that is,

√
2 is irrational.

In Section 1.3 there is a statement about the Division algorithm which
says that given two integers a and b such that b > 0, there exist unique
integers q and r for which

a = qb+ r, 0 ≤ r < b.

Now we prove that q and r are unique. We give a proof by contradiction.
Assume that there exist integers q, q′ and r, r′ such that q 6= q′ or r 6= r′ and

a = qb+ r, 0 ≤ r < b,

a = q′b+ r′, 0 ≤ r′ < b.
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The above equations imply that

b(q − q′) = r′ − r.

It follows that b divides r′ − r. We also have the inequalities

0 ≤r < b,

0 ≤r′ < b.

So we have that
−b < r′ − r < b.

There is only one integer in this interval which is a multiple of b, namely 0.
We obtained that r′ − r = 0, that is, r′ = r. Also we have that b(q − q′) =

r′ − r = 0. Since b > 0, it is clear that q− q′ = 0 must hold, hence q = q′. A
contradiction, since we assumed that q 6= q′ or r 6= r′.

Let us consider a proposition about prime numbers (a positive integer is
prime if it is greater than 1 and has no positive divisors other than 1 and the
number itself.) If p, q and r are prime numbers, then

p2 + q2 6= r2.

Assume the opposite, that is, there exist prime numbers p, q and r such that
p2 + q2 = r2. There are three possibilities

(1) p and q are odd primes,

(2) p and q are even primes,

(3) one of the primes p, q is even the other is odd.

(1) We have that p and q are odd primes, hence p2 + q2 = r2 is even.
If r2 is even, then r is even. The only even prime number is 2, so we have
r = 2. That is, p2 + q2 = 4. Since p and q are odd primes we have p, q ≥ 3.
Therefore p2 + q2 ≥ 18, a contradiction. We proved that if p and q are odd
primes, then the statement must be true.

(2) We have that p and q are even primes, that is, p = q = 2. We obtain
that 8 = r2. It implies that r is even, so r = 2. A contradiction since r2 = 4
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while we concluded that r2 must be 8. In this case our statement turns out
to be true.

(3) We may suppose that p is even and q is odd. That is, p = 2 and
q = 2q1+1 for some q1. It is clear that r is also odd, since its square is a sum
of an even number and an odd number, that is, r = 2r1 + 1. Our equation
implies that 4 + (2q1 + 1)2 = (2r1 + 1)2, which can be written as

4 + 4q21 + 4q1 + 1 = 4r21 + 4r1 + 1.

One gets that
q1(q1 + 1) + 1 = r1(r1 + 1).

The product of two consecutive integers is even, so q1(q1 + 1) and r1(r1 + 1)

are even. Then we have that r1(r1 + 1) − q1(q1 + 1) is an even integer, but
the above equation implies that

r1(r1 + 1)− q1(q1 + 1) = 1,

a contradiction since 1 is not an even integer.
Now we prove a result related to prime numbers. The proof we provide

is a nice indirect proof due to Euclid.

Proposition 3.4. There are infinitely many prime numbers.

Proof. Suppose that there are only finitely many primes, let say p1 < p2 <

p3 < . . . < pn. Let us consider the integer

N = p1p2 · · · pn + 1.

Since N is not on the list of prime numbers it must have a prime divisor.
It means that for some 1 ≤ i ≤ n the prime pi divides N . Applying the
Division algorithm we obtain

N =

( ∏
1≤k≤n,k 6=i

pk

)
· pi + 1,

that is, the remainder is equal to 1. Thus N is not divisible by pi, a contra-
diction. Thus we have proved that there are infinitely many primes.
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Exercise 3.14. Prove that if x + y > 10 for some x, y ∈ Z, then x > 5 or
y > 5.

Exercise 3.15. Prove that there exists no integer n such that n2 − 2 is a
multiple of 4.

Exercise 3.16. Prove that
√
2 +
√
3 is irrational.

Exercise 3.17. Prove that if a, b and c are odd integers, then the equation

ax2 + bx+ c = 0

has no solution with x ∈ Q.

Exercise 3.18. Given n integers a1, a2, . . . , an, prove that there exists 1 ≤
i ≤ n such that

ai ≥
a1 + a2 + . . .+ an

n
.

Exercise 3.19. Let Fn be a sequence defined by F1 = F2 = 1 and Fn =

Fn−1+Fn−2, n ≥ 3, that is, the Fibonacci sequence. Prove that gcd(Fn, Fn+1) =

1 for all positive integer n.

3.3 Constructive proofs

In this section we deal with several problems for which a method can be
provided to create a solution. We consider the coin problem (known also
as the Frobenius problem). Let us be given a currency system with k ≥ 2

distinct integer denominations a1 < a2 < . . . < ak. Which amounts can be
changed? This question yields the following linear Diophantine equation

a1x1 + a2x2 + . . .+ akxk = n,

where x1, . . . , xk are non-negative integers. Now we study the case k = 2,
that is, our equation is

a1x1 + a2x2 = n.

There are some natural questions to pose:
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• Does the equation possess integer solutions?

• How many solutions does it have?

• How to determine all solutions?

In what follows we consider the above problem but we allow integer solu-
tions instead of non-negative integer solutions. We will use these results to
answer the original question.

Assume that gcd(a1, a2) = d. Since d divides a1x1 + a2x2 we easily get
that d divides n, if there is a solution in integers. For example, if we consider
the equation

6x1 + 8x2 = 5,

then 2 divides 6x1 + 8x2, but 2 does not divide 5. Therefore there is no
solution in integers.

Now suppose that (u1, u2) is a solution, that is, a1u1+ a2u2 = n. Assume
that there exists a different solution, say (v1, v2). We have that

a1u1 + a2u2 = n,

a1v1 + a2v2 = n.

It implies that
a1(u1 − v1) = a2(v2 − u2).

Let b1 = a1/d and b2 = a2/d. Since d is the largest common divisor of a1 and
a2, we obtain that gcd(b1, b2) = 1. We simplify the above equation by d to
get

b1(u1 − v1) = b2(v2 − u2).

It is clear that b1 divides v2−u2, since gcd(b1, b2) = 1. So we have v2−u2 = b1t

for some t ∈ Z. Thus
v2 = u2 + b1t,

and
v1 = u1 − b2t.

It follows that there are infinitely many integer solutions. We have proved
that there is no solution if gcd(a1, a2) does not divide n, and if there is a
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solution, then there are infinitely many integer solutions. In Section 1.3 we
showed that one can use the Euclidean algorithm to determine integers x, y
for which a1x+ a2y = gcd(a1, a2) = d. Now assume that d divides n, that is,
n = n1d for some n1. We obtain the following equation

a1xn1 + a2yn1 = dn1 = n.

Therefore (xn1, yn1) is a solution of the equation a1x1 + a2x2 = n. Let us
summarize what we obtained.

Theorem 3.5. Let a1, a2 and n be integers with a1 and a2 not both zero.
The linear Diophantine equation a1x1 + a2x2 = n has a solution if and only
if gcd(a1, a2) divides n.

If gcd(a1, a2) divides n and (x, y) is a solution of the equation a1x+a2y =

gcd(a1, a2) provided by the Euclidean algorithm, then(
xn

gcd(a1, a2)
,

yn

gcd(a1, a2)

)
is a solution of the equation a1x1 + a2x2 = n.

If (u1, u2) is a solution of the equation a1x1 + a2x2 = n, then(
u1 −

a2
gcd(a1, a2)

t, u2 +
a1

gcd(a1, a2)
t

)
, t ∈ Z

are solutions of the equation a1x1 + a2x2 = n.

We apply the previous method to determine all integer solutions of the
equation

132x1 + 187x2 = 55.

First we find the greatest common divisor of 132 and 187. We use the Eu-
clidean algorithm:

187 = 1 · 132 + 55

132 = 2 · 55 + 22

55 = 2 · 22 + 11

22 = 2 · 11 + 0.
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That is, gcd(132, 187) = 11. Since 11 divides 55 we know that there are
infinitely many integer solutions. The next step is to construct a solution to
the equation 132x+ 187y = 11 :

11 = 55− 2 · 22

= 55− 2 · (132− 2 · 55) = −2 · 132 + 5 · 55

= −2 · 132 + 5 · (187− 132) = 5 · 187− 7 · 132.

We obtained that x = −7, y = 5 is a solution to the equation 132x+ 187y =

11. Hence we have

132 · (−7 · 5) + 187 · (5 · 5) = 55.

It implies that x1 = −35, x2 = 25 is a solution to the equation 132x1+187x2 =

55. Our theorem yields that

(−35− 17t, 25 + 12t) t ∈ Z

are solutions of the equation 132x1 + 187x2 = 55.
We can handle equations of the form a1x1+ a2x2 = n in x1, x2 ∈ Z. If we

have gcd(a1, a2) = 1, then we can solve the equation for any n in integers.
What can we say about this equation if we allow only non-negative integers?
Let us deal with the equation

7x1 + 11x2 = n.

From the Euclidean algorithm we get that

7 · (−3) + 11 · 2 = 1.

Thus we have that
(−3n, 2n)

is a solution to the equation 7x1 + 11x2 = n. From this particular solution
we get infinitely many solutions:

(−3n− 11t, 2n+ 7t) t ∈ Z.
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We would like to have non-negative solutions, hence

−3n− 11t ≥ 0⇒ t ≤ −3n
11

2n+ 7t ≥ 0⇒ t ≥ −2n
7

.

So we have the following inequalities

−2n
7
≤ t ≤ −3n

11
.

If there is an integer contained in the interval [−2n
7
, −3n

11
], then n can be repre-

sented in the form 7x1+11x2. Denote by In the set
{
t | −2n

7
≤ t ≤ −3n

11
, t ∈ Z

}
.

n In n In n In n In n In

1 ∅ 16 ∅ 31 ∅ 46 {−13 } 61 {−17 }
2 ∅ 17 ∅ 32 {−9 } 47 {−13 } 62 {−17 }
3 ∅ 18 {−5 } 33 {−9 } 48 ∅ 63 {−18 }
4 ∅ 19 ∅ 34 ∅ 49 {−14 } 64 {−18 }
5 ∅ 20 ∅ 35 {−10 } 50 {−14 } 65 {−18 }
6 ∅ 21 {−6 } 36 {−10 } 51 {−14 } 66 {−18 }
7 {−2 } 22 {−6 } 37 ∅ 52 ∅ 67 {−19 }
8 ∅ 23 ∅ 38 ∅ 53 {−15 } 68 {−19 }
9 ∅ 24 ∅ 39 {−11 } 54 {−15 } 69 {−19 }
10 ∅ 25 {−7 } 40 {−11 } 55 {−15 } 70 {−20 }
11 {−3 } 26 ∅ 41 ∅ 56 {−16 } 71 {−20 }
12 ∅ 27 ∅ 42 {−12 } 57 {−16 } 72 {−20 }
13 ∅ 28 {−8 } 43 {−12 } 58 {−16 } 73 {−20 }
14 {−4 } 29 {−8 } 44 {−12 } 59 ∅ 74 {−21 }
15 ∅ 30 ∅ 45 ∅ 60 {−17 } 75 {−21 }

We can find 7 consecutive integers indicated in the table for which the set In
is not empty, that is, those integers can be represented in the form 7x1+11x2 :

n = 60 x1 = (−3) · 60− 11 · (−17) = 7, x2 = 2 · 60 + 7 · (−17) = 1,

n = 61 x1 = (−3) · 61− 11 · (−17) = 4, x2 = 2 · 61 + 7 · (−17) = 3,

n = 62 x1 = (−3) · 62− 11 · (−17) = 1, x2 = 2 · 62 + 7 · (−17) = 5,
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n = 63 x1 = (−3) · 63− 11 · (−18) = 9, x2 = 2 · 63 + 7 · (−18) = 0,

n = 64 x1 = (−3) · 64− 11 · (−18) = 6, x2 = 2 · 64 + 7 · (−18) = 2,

n = 65 x1 = (−3) · 65− 11 · (−18) = 3, x2 = 2 · 65 + 7 · (−18) = 4,

n = 66 x1 = (−3) · 66− 11 · (−18) = 0, x2 = 2 · 66 + 7 · (−18) = 6.

Given a solution for n = 60 we can easily find a solution for n = 67 and
n = 74 etc. We use this idea to provide solutions for all n > 59. The
Division algorithm says that if we divide an integer by 7, then the remainder
is between 0 and 6.

If the remainder is 0, then from the equation 63 = 7 · 9 + 11 · 0 we get

7(k + 9) = 7(k + 9) + 11 · 0, k ≥ 0.

That is, if we have an integer n ≥ 63 divisible by 7, then it can be written
in the form 7x1 + 11x2 with x1, x2 ≥ 0.

If the remainder is 1, then we use the equation 64 = 7 ·6+11 ·2 to obtain

7(k + 9) + 1 = 7(k + 6) + 11 · 2, k ≥ 0.

In a similar way one computes the general solutions for the remaining cases.
How to deal with equations with more than two variables? We show how

to reduce equations in three unknowns to equations in two unknowns. So
the techniques applied previously can be used here. Consider the equation

4x1 + 5x2 + 7x3 = n, x1, x2, x3 ∈ Z.

Introduce a new variable y1 = 4x1 + 5x2, then the equation can be written
as

y1 + 7x3 = n.

A particular solution is (n, 0), hence all the integer solutions can be parametrized
as follows

y1 = n+ 7t,

x3 = −t,
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for some t ∈ Z. It remains to determine the integer solutions of the equation
y1 = 4x1+5x2 = n+7t. The first thing to do is to find a particular solution.
It is easy to check that

x1 = −n+ 3t,

x2 = n− t

is a solution. Applying the techniques used in case of two variables we get
the following parametrization of integral solution

x1 = −n+ 3t− 5s,

x2 = n− t+ 4s,

x3 = −t

for some s, t ∈ Z. As a concrete example consider the equation 4x1 + 5x2 +

7x3 = 23. Then we obtain integer solutions by substituting concrete integral
values into the above formulas. Some solutions are indicated in the following
table

(s, t) (x1, x2, x3)

(0, 0) (−23, 23, 0)
(−1, 0) (−18, 19, 0)
(0,−1) (−26, 24, 1)
(1, 0) (−28, 27, 0)
(0, 1) (−20, 22,−1)

(−1,−1) (−21, 20, 1)
(1, 1) (−25, 26,−1)

What about non-negative integer solutions? That is, if one asks for solu-
tions such that x1, x2, x3 ∈ N∪{ 0 }. In case of the equation 4x1+5x2+7x3 =

n we determined the parametrization of the integral solutions, so we get the
following inequalities

0 ≤ −n+ 3t− 5s,

0 ≤ n− t+ 4s,

0 ≤ −t.
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That is, we immediately see that t ≤ 0. We try to eliminate s from the first
and the second equations. So we multiply by 4 the first equation and by 5
the second one and we get

5t− 5n ≤ 20s ≤ −4n+ 12t.

That is, we obtain that

−n

7
≤ t ≤ 0.

It remains to determine a lower bound and an upper bound for s. We have

20s ≥ 5t− 5n ≥ −5n
7
− 5n,

hence s ≥ −2n
7
. Similarly, we have

20s ≤ −4n+ 12t ≤ −4n,

therefore s ≤ −n
5
. Let us denote the two intervals as Is = [−2n

7
,−n

5
] and

It = [−n
7
, 0]. To have a non-negative integer solution we need an integer

contained in the interval Is and another one contained in It. If the length of
the interval Is is at least 1 and similarly for It, then for sure there will be
such integers. The length of Is is −n

5
+ 2n

7
= 3n

35
and the length of It is n

7
. We

have that the length of Is is at least 1 if n ≥ 12 and the length of It is at least
1 if n ≥ 7. If n ≥ 12, then an integer solution is guaranteed. It means that
if n ≥ 12, then the equation 4x1 + 5x2 + 7x3 = n has non-negative integer
solution. Now we deal with the remaining cases 1 ≤ n ≤ 11.
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n integer(s) in Is integer(s) in It solution(s): (x1, x2, x3)

1 - 0 -
2 - 0 -
3 - 0 -
4 -1 0 (1, 0, 0)

5 -1 0 (0, 1, 0)

6 - 0 -
7 -2 -1,0 (0, 0, 1)

8 -2 -1,0 (2, 0, 0)

9 -2 -1,0 (1, 1, 0)

10 -2 -1,0 (0, 2, 0)

11 -3 -1,0 (1, 0, 1)

We proved that if n > 6, then the equation 4x1 + 5x2 + 7x3 = n has non-
negative integer solution.

Exercise 3.20. Prove that all integers n ≥ 24 can be written as 5x1 + 7x2

for some non-negative integers x1, x2.

Exercise 3.21. Prove that all integers n ≥ 12 can be written as 4x1 + 5x2

for some non-negative integers x1, x2. Determine a formula for the solution
in case of integers of the form n = 4K + 1.

Exercise 3.22. Parametrize all integer solutions of the equation

4x1 + 6x2 + 9x3 = n.

Exercise 3.23. Determine the largest positive integer n for which the equa-
tion

4x1 + 6x2 + 9x3 = n

has no non-negative integer solution.

3.4 Pigeonhole principle

In this section we study the so-called pigeonhole principle which is a simple
tool to prove several interesting results. First we prove the simplest form of
the pigeonhole principle.
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Theorem 3.6. If n + 1 pigeons are placed into n pigeonholes, then there
exists a pigeonhole containing at least 2 pigeons.

Proof. Assume that the statement is false. That is, each pigeonhole contains
at most one pigeon. In this case the total number of pigeons is at most n, a
contradiction.

One can easily generalize the above theorem. We have the following.

Theorem 3.7. If mn + 1 pigeons are placed into n pigeonholes, then there
exists a pigeonhole containing at least m+ 1 pigeons.

Proof. Again we prove the statement by contradiction. Assume that the
statement is false, that is, each pigeonhole contains at most m pigeons. We
obtain that the total number of pigeons is at most mn, a contradiction since
there are mn+ 1 pigeons.

Finally we prove a version where the pigeonholes may contain different
number of pigeons.

Theorem 3.8. Let m1,m2, . . . ,mn are positive integers. If m1 +m2 + . . .+

mn − n + 1 pigeons are placed into n pigeonholes, then for some 1 ≤ i ≤ n

one has that the ith pigeonhole contains at least mi pigeons.

Proof. Suppose that the first pigeonhole contains at most m1 − 1 pigeons,
the second contains at most m2−1 pigeons etc., the nth pigeonhole contains
at most mn − 1 pigeons. The total number of pigeons contained in the n

pigeonholes can be at most

(m1 − 1) + (m2 − 1) + . . .+ (mn − 1) = m1 +m2 + . . .+mn − n,

a contradiction since there are m1 +m2 + . . .+mn − n+ 1 pigeons.

To apply the pigeonhole principle one has to decide what the pigeons are.
Then one has to identify the pigeonholes in such a way that if two pigeons
are in the same pigeonhole, then they have some special property in common.
It is important that we need more pigeons than pigeonholes. In what follows
we solve several concrete problems by using the pigeonhole principle.
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Proposition 3.9. There is a nonzero multiple of 6 whose digits are all zeroes
and ones.

Proof. We apply the pigeonhole principle and the Division algorithm. Con-
sider the integers an =

∑n
k=0 10

k for n = 0, 1, 2, 3, 4, 5. We can write these
numbers as qn · 6 + rn, where qn is the quotient and rn is the remainder,
so 0 ≤ rn < 6. There are six possibilities for rn and there are six integers
a0, a1, . . . , a5. The numbers a0, a1, . . . , a5 are odd integers while 6 is even,
hence rn 6= 0 for all n. We have that rn ∈ { 1, 2, 3, 4, 5 } for all n. There
are only 5 pigeonholes (possible remainders) and 6 pigeons (integers an). We
obtain that there are at least two integers having the same remainder, say,
am1 and am2 , where m1 < m2. In this case am2 − am1 is divisible by 6 and all
the digits are zeroes and ones.

n an qn · 6 + rn

0 1 0 · 6 + 1

1 11 1 · 6 + 5

2 111 18 · 6 + 3

3 1111 185 · 6 + 1

4 11111 1851 · 6 + 5

5 111111 18518 · 6 + 3

It is clear that r0 = r3 = 1, therefore a3− a0 = 1111− 1 = 1110 is a multiple
of 6 (1110 = 185 · 6) and this integer is in a right form.

Proposition 3.10. Let A be a set containing n ≥ 2 integers. There is a
subset of A such that the sum of its elements is a multiple of n.

Proof. We have a set containing n elements, let us say these are a1, a2, . . . , an.
We define n subsets as follows

Sk = { a1, . . . , ak } , k = 1, 2, . . . , n,

that is, S1 = { a1 } , S2 = { a1, a2 } , . . . , Sn = A. Denote by sk the sum of the
elements of Sk. We apply the Division algorithm to write sk = qk · n + rk,
where 0 ≤ rk < n. If for some k we have rk = 0, then

sk = a1 + . . .+ ak = qk · n,
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that is, the sum of the elements of Sk is a multiple of n. In this case the
theorem is true. If no such k exists, then we have only n− 1 possible values
for rk and we have n subsets. The pigeonhole principle says that there are
at least two subsets (say Sk and Sl, k < l) for which rk = rl. In this case we
obtain that

sl − sk = (ql − qk)n = ak+1 + ak+2 + . . .+ al.

Thus the sum of the elements of the subset { ak+1, ak+2, . . . , al } is a multiple
of n.

Exercise 3.24. Prove that among 367 people, at least two were born on the
same day of the year.

Exercise 3.25. Prove that among 1500 people, at least four were born on
the same day of the year.

Exercise 3.26. Prove that if seven distinct integers are selected from the
set

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } ,

then two of these integers sum to 13.

Exercise 3.27. We choose 11 integers from the set { 1, 2, . . . , 20 }. Prove
that 2 of the chosen integers are consecutive.

Exercise 3.28. Prove that if five points are selected from the interior of a
unit square, then there are two points whose distance is less than

√
2/2.

Exercise 3.29. Let A = { 1, 2, . . . , 100 }. Prove that if we choose 51 distinct
integers from A, then there are at least two integers such that one of them
is divisible by the other.

Exercise 3.30. How many students in a class must there be to ensure that
4 students get the same grade (one of 1, 2, 3, 4, or 5)?

Exercise 3.31. How many bishops can one place on an 8 × 8 chessboard
such that no two bishops can hit each other?
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3.5 A card trick

In this section we introduce a card trick, which is based on several mathe-
matical ideas. In fact the trick combines several tools from this chapter. To
understand how it works one should be familiar with the pigeonhole princi-
ple, proof by contradiction and some tiny amount of combinatorics. Here is
the trick.

An assistant asks the audience to choose five cards from a normal deck of
52 playing cards. They can choose any five as they like. They pass those five
cards to the assistant, who reveals four of them to the magician, one remains
only known by the audience and the assistant. The magician looks at the
four cards handed to him and announces the 5th card, the secret one.

This mathematical card trick was invented by William Fitch Cheney Jr.
and it was first published by Wallace Lee in Maths Miracles in 1950.1

How does this trick work? First we apply the pigeonhole principle to
obtain a very important imformation. There are only 4 suits (clubs ♣, di-
amonds ♦, hearts ♥ and spades ♠) while there are 5 cards choosen. An
application of pigeonhole principle yields that at least 2 cards must be of
the same suit. The assistant and the magician have an agreement about the
ordering of cards, e.g. A − 2 − 3 − . . . − J − Q − K. There are two cards
having the same suit, say C1 and C2.

A
K

Q

J

10

9

8 7

6

5

4

3

2

It is possible to define a distance be-
tween them. One considers the 13 same-
suit cards arranged in a circle from A toK
going clockwise. Given C1 and C2 one de-
fines the distance d(C1, C2) as the clock-
wise distance from C1 to C2. The sec-
ond observation is that either d(C1, C2) ≤
6 or d(C2, C1) ≤ 6. This statement
can be proved indirectly. Assume that
d(C1, C2) > 6 and d(C2, C1) > 6. Then
there must be at least 14 cards having the

1William Wallace Lee, Maths Miracles, Durham, N. C. (1950)
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same suit, a contradiction. Let us consider an example. If the two cards are
C1 = 3 and C2 = J, then we have that d(3, J) = 8 and d(J, 3) = 5. This fact
is used to decide which card is going to be at the top of the pile. Assume
that d(Ci, Cj) ≤ 6. The assistant will place card Ci at the top of the pile and
Cj will be the hidden card. The assistant still has to decide how to order the
remaining 3 cards. Here comes a tiny combinatorics involved, three cards can
be ordered in 3! = 6 different ways. That is, somehow the assistant will be
able to encode the distance d(Ci, Cj) ≤ 6. The 52 cards are ordered following
the rules:

rule I.: ♣ < ♦ < ♥ < ♠,
rule II.: A < 2 < 3 < . . . < J < Q < K,

So we have A♣ < 2♣ < . . . < Q♠ < K♠. Back to the last three cards. Let
us denote by 1 the card having the lowest rank, by 3 the card having the
highest rank and by 2 the remaining one. It is easy to make an agreement
about the encoding of the distance, an example is given in the following table

d(Ci, Cj) order of the 3 cards
1 1,2,3
2 1,3,2
3 2,1,3
4 2,3,1
5 3,1,2
6 3,2,1

It is time to start the card trick! Assume that the assistant gets the following
cards from the audience: 3♣, K♣, 8♦, 5♥ and Q♠. Here 3♣, K♣ are two
cards having the same suit. What about their distance? One has

d(3♣, K♣) = 10,

d(K♣, 3♣) = 3.

The assistant has to encode 3. The ordering of the remaining three cards is
(1 = 8♦) < (2 = 5♥) < (3 = Q♠). That is,

d(K♣, 3♣) = 3⇒ 5♥, 8♦, Q♠.
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Therefore the pile of cards the assistant gives to the magician is

K♣, 5♥, 8♦, Q♠.

Exercise 3.32. What card is being encoded by the following sequences of
four cards?

(a) 7♣, 3♦, J♦, A♠,
(b) J♦, 9♣, Q♥, 8♥,
(c) 9♥, 10♥, J♦, 6♦,
(d) 10♦, 4♠, 2♠, 5♦,
(e) 8♠, 7♦, 7♥, 3♥.

Exercise 3.33. Which card should be the hidden card? How to order the
remaining four cards to encode the hidden one?

(a) 3♣, 7♣, 5♦, 2♦, A♠,
(b) 10♣, A♦, J♦, 8♥, 4♠,
(c) A♣, 6♦, K♥, 7♠, 8♠,
(d) 7♣, 8♦, 3♠, 7♠, 9♠,
(e) J♦, Q♦, 7♥, 10♥, 3♠.



Chapter 4

Pascal’s triangle

Let us create a triangle from numbers in the following way. Let us write 1 to
the top. This we call row zero of the triangle. Then every row of the triangle
contains one more numbers than the row before, aligned in a way that every
number is lower left and/or lower right from the numbers in the row above.
We start and end every row by 1, and in between we write numbers which
are the sums of the two numbers above them, that is, we write the sum of
the upper left and upper right numbers. Thus in the first row (right below
the top 1) we write 1 to lower left and to lower right of this number. Then in
the second row we write 1, 2, 1, such that 2 is in between the two 1’s of the
first row. In the third row, we write 1, 3, 3, 1, etc. (see Table 4.1). This way,
one can easily compute the numbers occurring in the triangle row after row.
This triangle is called Pascal’s triangle, named after the French polymath
Blaise Pascal (1623–1662).

Let us now take a closer look to these numbers. Consider for example
the sixth row: 1, 6, 15, 20, 15, 6, 1. They look like the binomial coefficients(
6
k

)
. Indeed, 1 =

(
6
0

)
, 6 =

(
6
1

)
, 15 =

(
6
2

)
, 20 =

(
6
3

)
, 15 =

(
6
4

)
, 6 =

(
6
5

)
, 1 =

(
6
6

)
.

It seems that (at least for this small part of the triangle), in the nth row the
binomial coefficients

(
n
k

)
occur for k = 0, 1, 2, . . . , n. This is true for the first

row (
(
1
0

)
= 1,

(
1
1

)
= 1), and even for the zero row:

(
0
0

)
= 1. That is, it looks

like Pascal’s triangle is the same as the triangle of the binomial coefficients,
where in the nth row we write the binomial coefficients

(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
such that we align the midpoints of the rows (Table 4.2).
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Table 4.1: Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Table 4.2: Triangle of Binomial coefficients.(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)

How can we prove that the two triangles are one and the same? One
way to do it would be to prove that they can be generated by the same
rule. Pascal’s triangle was generated such that every row starts and ends
with 1, and every other number is the sum of the two numbers right above
it. Considering the nth row in Table 4.2, it starts by

(
n
0

)
= 1, and it ends

with
(
n
n

)
= 1. Thus we only need to check whether every other number is

the sum of the two numbers above it. The kth number in the nth row is
(
n
k

)
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(every row starts with the zeroth number), the two numbers above it are the
(k − 1)st and kth of row n − 1, that is,

(
n−1
k−1

)
and

(
n−1
k

)
. Thus, if we prove

that
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, then the two triangles are indeed the same.

Proposition 4.1. For positive integers k ≤ n we have(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof. Let us substitute the formula (2.1) into the right-hand side:(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)! · (n− 1− (k − 1))!
+

(n− 1)!

k! · (n− 1− k)!

=
(n− 1)!

(k − 1)! · (n− k)!
+

(n− 1)!

k! · (n− k − 1)!

=
(n− 1)! · k + (n− 1)! · (n− k)

k! · (n− k)!
=

(n− 1)! · (k + n− k)

k! · (n− k)!

=
(n− 1)! · n
k! · (n− k)!

=
n!

k! · (n− k)!
=

(
n

k

)
.

Exercise 4.1. Create a precise proof using induction that the two triangles
are the same.

This proof is a correct one, but not necessarily satisfying. It contains
calculations, but does not show the reason why the sum of the binomial
coefficients

(
n−1
k−1

)
and

(
n−1
k

)
is really

(
n
k

)
. One might wonder if there is an

“easier” proof, which only uses the definition of
(
n
k

)
. Indeed there is, as we

show now.

Second proof of Proposition 4.1. Let A = { 1, 2, . . . , n }, and we count the
number of k-element subsets of A in two different ways. On the one hand,
we know that the number of k-element subsets of A is

(
n
k

)
. On the other

hand, we count the k-element subsets such that we first count those which
contain the element n, then we count those, which do not.
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Count the number of k-element subsets of A containing n first. If a k-
element subset S of A contains n, then it contains k− 1 more elements from
{ 1, 2, . . . , n− 1 }. Such a subset can be chosen in

(
n−1
k−1

)
-many ways. Thus,

A has
(
n−1
k−1

)
-many k-element subsets containing the element n.

Now, count the number of k-element subsets of A not containing n. If
a k-element subset S of A does not contain n, then it contains k elements
from { 1, 2, . . . , n− 1 }. Such a subset can be chosen in

(
n−1
k

)
-many ways.

Thus, A has
(
n−1
k

)
-many k-element subsets not containing the element n. As

a k-element subset either contains or does not contain the element n, the
number of k-element subsets of A is

(
n−1
k−1

)
+
(
n−1
k

)
, which therefore must be

the same number as
(
n
k

)
.

Exercise 4.2. Compute the first twelve rows of Pascal’s triangle.

4.1 Binomial theorem

In the Algebra course we have learned to expand the expression (x + y)2 to
x2 + 2xy + y2. In this Section we expand (x+ y)n for arbitrary nonnegative
integers n. For this, let us first recall how such an expression should be
calculated.

Consider first (x + y)2. This is the product of (x + y) by itself, that is,
(x + y)2 = (x + y) · (x + y), and has to be computed by multiplying every
term of the first factor by every term of the second factor:

(4.1) (x+ y)2 = (x+ y) · (x+ y) = x2 + xy + yx+ y2 = x2 + 2xy + y2.

Now, consider (x + y)3. This is the threefold product of (x + y) with itself,
that is, (x + y)3 = (x + y) · (x + y) · (x + y). Note, that this is the same
as the product (x + y)2 · (x + y), for which the first factor we have already
computed in (4.1).

(x+ y)3 = (x+ y)2 · (x+ y) = (x2 + 2xy + y2) · (x+ y)

= x3 + x2y + 2x2y + 2xy2 + xy2 + y3

= x3 + 3x2y + 3xy2 + y3.
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This way, we can easily continue calculating the higher powers of (x+ y):

(x+ y)4 = (x+ y)3 · (x+ y) = (x3 + 3x2y + 3xy2 + y3) · (x+ y)

= x4 + x3y + 3x3y + 3x2y2 + 3x2y2 + 3xy3 + xy3 + y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4.

(x+ y)5 = (x+ y)4 · (x+ y) = (x4 + 4x3y + 6x2y2 + 4xy3 + y4) · (x+ y)

= x5 + x4y + 4x4y + 4x3y2 + 6x3y2 + 6x2y3 + 4x2y3 + 4xy4 + xy4 + y5

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

(x+ y)6 = (x+ y)5 · (x+ y) = (x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5) · (x+ y)

= x6 + x5y + 5x5y + 5x4y2 + 10x4y2 + 10x3y3 + 10x3y3 + 10x2y4

+ 5x2y4 + 5xy5 + xy5 + y6

= x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

Let us summarize our findings:

(x+ y)2 = x2 + 2xy + y2,

(x+ y)3 = x3 + 3x2y + 3xy2 + y3,

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5,

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

Now, wait a minute! The coefficients arising in these expressions are
exactly the numbers occurring in Pascal’s triangle. Indeed, the coefficients
of (x + y)6 are 1 =

(
6
0

)
, 6 =

(
6
1

)
, 15 =

(
6
2

)
, 20 =

(
6
3

)
, 15 =

(
6
4

)
, 6 =

(
6
5

)
,

1 =
(
6
6

)
. This cannot be a coincidence! It looks like that when we expand

(x + y)n, then the coefficient for the term xn−kyk is
(
n
k

)
. This is always the

case, not only for the first six powers. This is the statement of the binomial
theorem.

Theorem 4.2 (Binomial theorem). Let n be a natural number. Then

(x+ y)n = xn + nxn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 2

)
x2yn−2 + nxyn−1 + yn

=
n∑

k=0

(
n

k

)
xn−kyk.
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Proof. Note first, that the Binomial theorem holds for n = 0 and n = 1, as
well: (x+ y)0 = 1 =

(
0
0

)
x0y0, (x+ y)1 = x+ y =

(
1
0

)
x1y0 +

(
1
1

)
x0y1. Now, we

can prove the theorem by induction on n. Assume that the statement holds
for n− 1, that is,

(x+ y)n−1 =
n−1∑
k=0

(
n− 1

k

)
xn−1−kyk.

This is the induction hypothesis. Now, compute (x + y)n using the same
method as before, and use the induction hypothesis for expanding (x+y)n−1:

(x+ y)n = (x+ y)n−1 · (x+ y) =

(
n−1∑
k=0

(
n− 1

k

)
xn−1−kyk

)
· (x+ y)

=
n−1∑
k=0

(
n− 1

k

)
xn−1−kyk · x+

n−1∑
k=0

(
n− 1

k

)
xn−1−kyk · y

=
n−1∑
k=0

(
n− 1

k

)
xn−kyk +

n−1∑
k=0

(
n− 1

k

)
xn−1−kyk+1(4.2)

= xn +
n−1∑
k=1

(
n− 1

k

)
xn−kyk +

n−2∑
k=0

(
n− 1

k

)
xn−1−kyk+1 + yn(4.3)

= xn +
n−1∑
k=1

(
n− 1

k

)
xn−kyk +

n−1∑
k=1

(
n− 1

k − 1

)
xn−kyk + yn

= xn +
n−1∑
k=1

((
n− 1

k

)
+

(
n− 1

k − 1

))
xn−kyk + yn(4.4)

= xn +
n−1∑
k=1

(
n

k

)
xn−kyk + yn =

n∑
k=0

(
n

k

)
xn−kyk.

Here, we have separated xn and yn from the sums in (4.2), then “re-indexed”
the second sum in (4.3) to find the coefficient of the common terms xn−kyk

(for k = 1, 2, . . . , n − 1) of the two sums. Finally, in (4.4) we used the
generating rule of Pascal’s triangle (Proposition 4.1).

Exercise 4.3. Repeat the proof by “writing out” all sums.

Now we understand why binomial coefficients are called like that: because
they arise as the coefficients in the nth power of binomial sums. Moreover, the
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proof of the Binomial theorem revealed that raising (x+y) to the next power
affects the coefficients exactly the same way as we generate Pascal’s triangle.
Nevertheless, one can find another argument, which explains “better” why
the binomial coefficients arise in the nth power.

Consider (x+ y)6:

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

How do we obtain the coefficient 15 for x4y2? Now, (x + y)6 is the 6-fold
product of (x+ y) by itself:

(x+ y)6 = (x+ y) · (x+ y) · (x+ y) · (x+ y) · (x+ y) · (x+ y).

The multiplication of these six factors is carried out by choosing a term from
each factor (x or y) in every possible way, multiplying these six terms, and
then adding the resulting products together. Thus the coefficient of x4y2 is
the number of possibilities to choose four times the x and two times the y

out of the six factors. Altogether there are six y’s to choose from, and we
need to choose two of them (and the remaining four factors will be chosen
as x). This can be done in

(
6
2

)
= 15-many ways. Therefore the coefficient of

x4y2 is
(
6
2

)
= 15.

Exercise 4.4. Prove the Binomial Theorem using the argument provided
above.

The Binomial theorem can be used to calculate several nth powers. For
example, choosing y = 1, every power of y is 1, as well, thus

(x+ 1)n = xn + nxn−1 · 1 +
(
n

2

)
xn−2 · 12 + · · ·+ nx · 1n−1 + 1n

= xn + nxn−1 +

(
n

2

)
xn−2 + · · ·+ nx+ 1 =

n∑
k=0

(
n

k

)
xk.

Exercise 4.5. Write x = y = 1 into the Binomial theorem. Note that this
provides a second proof for Proposition 2.14.
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Alternatively, we can substitute −y instead of y in the Binomial theorem,
obtaining

(x− y)n = xn + nxn−1 · (−y) +
(
n

2

)
xn−2 · (−y)2 + · · ·+ nx · (−y)n−1 + (−y)n

= xn − nxn−1y +

(
n

2

)
xn−2y2 − · · ·+ (−1)n−1nxyn−1 + (−1)nyn

=
n∑

k=0

(−1)k
(
n

k

)
xn−kyk.

Choosing y = −1 yields

(x− 1)n = xn + nxn−1 · (−1) +
(
n

2

)
xn−2 · (−1)2 + · · ·+ nx · (−1)n−1 + (−1)n

= xn − nxn−1 +

(
n

2

)
xn−2 − · · ·+ (−1)n−1nx+ (−1)n

=
n∑

k=0

(−1)k
(
n

k

)
xn−k.

Exercise 4.6. Write x = 1, y = −1 into the Binomial theorem. What do
you observe?

Exercise 4.7. Expand the following expressions: (x+y)8, (x−y)8, (a+1)10,
(b− 3)5, (1 + 2/x)5, (a+ b)6, (1 + x)5, (3a+ 4b)4, (3− 2x)4.

Exercise 4.8. In the binomial expansion of (1− x/2)9, written in terms of
ascending powers of x, find the fourth term. Then find the coefficient of x5.

4.2 Identities

In this Section we investigate several properties of Pascal’s triangle. Through-
out this Section, we will first conjecture what identities hold by looking at the
first 12 rows of Pascal’s triangle. Therefore solving Exercise 4.2 is essential
before continuing.
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Let us start by the sum of the numbers in a row:

1 = 1,

1 + 1 = 2,

1 + 2 + 1 = 4,

1 + 3 + 3 + 1 = 8,

1 + 4 + 6 + 4 + 1 = 16,

1 + 5 + 10 + 10 + 5 + 1 = 32,

1 + 6 + 15 + 20 + 15 + 6 + 1 = 64.

It seems from these equations that the sum of the numbers in the nth
row is 2n. This stetement is equivalent to the equality

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 2

)
+

(
n

n− 1

)
+

(
n

n

)
= 2n.

Note, that we have already proved this, first in Proposition 2.14, then later
in Exercise 4.5. Now, we prove it a third way, using the generating rule of
Pascal’s triangle.

Let us consider first the 7th row, and try to compute the sum using the
generating rule of Pascal’s triangle, rather than adding the numbers:

1 + 7 + 21 + 35 + 35 + 21 + 7 + 1

= 1 + (1 + 6) + (6 + 15) + (15 + 20) + (20 + 15) + (15 + 6) + (6 + 1) + 1

= 2 · (1 + 6 + 15 + 20 + 15 + 6 + 1) = 2 · 26 = 27 = 128.

This idea can be used in the general case, as well.

Now, we prove that the sum of the numbers in the nth row of Pascal’s
triangle is 2n by induction on n. The statement holds for n = 0 and n = 1

(in fact, we just calculated that it holds for n ≤ 7). Assume now that the
statement holds for n, as well. That is, the sum of the numbers in the nth
row is 2n. Consider the sum of the (n+1)st row, and let us use the generating
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rule of Pascal’s triangle:(
n+ 1

0

)
+

(
n+ 1

1

)
+

(
n+ 1

2

)
+ · · ·+

(
n+ 1

n− 1

)
+

(
n+ 1

n

)
+

(
n+ 1

n+ 1

)
=

(
n

0

)
+

((
n

0

)
+

(
n

1

))
+

((
n

1

)
+

(
n

2

))
+

((
n

2

)
+

(
n

3

))
+ . . .

+

((
n

n− 2

)
+

(
n

n− 1

))
+

((
n

n− 1

)
+

(
n

n

))
+

(
n

n

)
= 2 ·

[(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 2

)
+

(
n

n− 1

)
+

(
n

n

)]
= 2 · 2n = 2n+1.

First, we replaced
(
n+1
0

)
= 1 by

(
n
0

)
= 1, and

(
n+1
n+1

)
= 1 by

(
n
n

)
= 1, then we

used the generating rule of Pascal’s triangle. Then we observed that every(
n
k

)
occurs twice in the sum (for 0 ≤ k ≤ n). Finally, we used the induction

hypothesis on the sum of the numbers for the nth row.
Let us use a similar reasoning to calculate the sum of the numbers in a

row, with alternating signs. That is, compute the sum

n∑
k=0

(−1)k ·
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+

(
n

2

)
−· · ·+(−1)n−1 ·

(
n

n− 1

)
+(−1)n ·

(
n

n

)
.

It is easy to compute this sum for the first couple rows:

1 = 1,

1− 1 = 0,

1− 2 + 1 = 0,

1− 3 + 3− 1 = 0,

1− 4 + 6− 4 + 1 = 0,

1− 5 + 10− 10 + 5− 1 = 0,

1− 6 + 15− 20 + 15− 6 + 1 = 0,

1− 7 + 21− 35 + 35− 21 + 7− 1 = 0.

It seems likely that for n ≥ 1 the alternating sum of the numbers in the nth
row of Pascal’s triangle is 0.
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Exercise 4.9. The alternating sum of the nth row is clearly 0 if n is odd.
Why?

Let us try to use the former argument to compute the alternating sum of
the numbers in the 8th row:

1− 8 + 28− 56 + 70− 56 + 28− 8 + 1 = 1− (1 + 7) + (7 + 21)− (21 + 35)

+ (35 + 35)− (35 + 21) + (21 + 7)− (7 + 1) + 1 = (1− 1) + (−7 + 7)

+ (21− 21) + (−35 + 35) + (35− 35) + (−21 + 21) + (7− 7) + (−1 + 1) = 0.

Using the very same proof technique, we can prove that the alternating sum
is 0 in the nth row, as well.

Exercise 4.10. Prove that the alternating sum of the nth row is 0, that is,
n∑

k=0

(−1)k ·
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+ · · ·+(−1)n−1 ·

(
n

n− 1

)
+(−1)n ·

(
n

n

)
= 0.

In fact, the technique can be used to prove an even more general state-
ment, namely we can determine the alternating sum if we stop at the kth
term (for some k ≤ n− 1):

Proposition 4.3.(
n

0

)
−
(
n

1

)
+ · · ·+ (−1)k−1 ·

(
n

k − 1

)
+ (−1)k ·

(
n

k

)
= (−1)k ·

(
n− 1

k

)
.

Proof. Consider the alternating sum of the nth row (for n ≥ 1), and use the
generating rule of Pascal’s triangle:(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)k−1 ·

(
n

k − 1

)
+ (−1)k ·

(
n

k

)
=

(
n− 1

0

)
−
((

n− 1

0

)
+

(
n− 1

1

))
+

((
n− 1

1

)
+

(
n− 1

2

))
− . . .

+ (−1)k−1 ·
((

n− 1

k − 2

)
+

(
n− 1

k − 1

))
+ (−1)k ·

((
n− 1

k − 1

)
+

(
n− 1

k

))
=

((
n− 1

0

)
−
(
n− 1

0

))
+

(
−
(
n− 1

1

)
+

(
n− 1

1

))
+

((
n− 1

2

)
−
(
n− 1

2

))
+ . . .

+

(
(−1)k−2 ·

(
n− 1

k − 2

)
+ (−1)k−1 ·

(
n− 1

k − 2

))
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+

(
(−1)k−1 ·

(
n− 1

k − 1

)
+ (−1)k ·

(
n− 1

k − 1

))
+ (−1)k ·

(
n− 1

k

)
= 0 + 0 + 0 + · · ·+ 0 + 0 + (−1)k ·

(
n− 1

k

)
= (−1)k ·

(
n− 1

k

)
.

First, we replaced
(
n
0

)
= 1 by

(
n−1
0

)
= 1, and

(
n
n

)
= 1 by

(
n−1
n−1

)
= 1, then we

used the generating rule of Pascal’s triangle. Then we observed that every(
n−1
j

)
occurs twice in the sum: first with a positive sign, then right after

it with a negative sign (for 0 ≤ j ≤ k − 1). The only term remaining is
(−1)k ·

(
n−1
k

)
.

If we define
(
n−1
n

)
to be 0 (considering there are no n-element subsets of

an (n− 1)-element set), then our statement on the alternating sums follows
from Proposition 4.3.

Now, consider the sum of the squares of the numbers in a row. We can
find a pattern here, as well:

12 = 1,

12 + 12 = 2,

12 + 22 + 12 = 6,

12 + 32 + 32 + 12 = 20,

12 + 42 + 62 + 42 + 12 = 70,

12 + 52 + 102 + 102 + 52 + 12 = 252,

12 + 62 + 152 + 202 + 152 + 62 + 12 = 924.

After computing the first twelve rows of Pascal’s triangle in Exercise 4.2, we
can observe that the results are the numbers occurring in the middle column.
That is, we can conjecture that the sum of the square of the numbers in row
n is

(
2n
n

)
, that is,

Proposition 4.4.

(4.5)
n∑

k=0

(
n

k

)2

=

(
n

0

)2

+

(
n

1

)2

+ · · ·+
(

n

n− 1

)2

+

(
n

n

)2

=

(
2n

n

)
.
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Proof. As earlier, we try to understand why this equation holds by giving a
combinatorial meaning to both sides. The right hand side gives away a clue:(
2n
n

)
is the number of ways to choose n elements out of a 2n-element set (say

S = { 1, 2, . . . , 2n }). Our plan is to prove that the left hand side of (4.5)
is the number of n-element subsets of S, as well. Let S1 = { 1, 2, . . . , n }
and S2 = {n+ 1, n+ 2, . . . , 2n }. Now, try to count the number of ways
to choose n-element of S by counting how many elements we choose from
S1 and from S2. If we choose 0 element from S1, then we must choose n

elements from S2. We can do this in
(
n
0

)
·
(
n
n

)
-many ways. If we choose 1

element from S1, then we must choose n − 1 elements from S2. We can do
this in

(
n
1

)
·
(

n
n−1

)
-many ways. If we choose 2 elements from S1, then we must

choose n− 2 elements from S2. We can do this in
(
n
2

)
·
(

n
n−2

)
-many ways. In

general, if we choose k elements from S1, then we must choose n−k elements
from S2. We can do this in

(
n
k

)
·
(

n
n−k

)
-many ways. In the end, if we choose

n elements from S1, then we must choose 0 element from S2. We can do this
in
(
n
n

)
·
(
n
0

)
-many ways. Thus, choosing n elements out of 2n can be done in

the following number of ways:(
n

0

)
·
(
n

n

)
+

(
n

1

)
·
(

n

n− 1

)
+ · · ·+

(
n

n

)
·
(
n

0

)
=

n∑
k=0

(
n

k

)
·
(

n

n− k

)
.

Finally, let us rewrite the left hand side by using the symmetry of Pascal’s
triangle, that is,

(
n

n−k

)
=
(
n
k

)
to obtain the left hand side of (4.5):(

n

0

)
·
(
n

n

)
+

(
n

1

)
·
(

n

n− 1

)
+ · · ·+

(
n

n

)
·
(
n

0

)
=

n∑
k=0

(
n

k

)
·
(

n

n− k

)
=

n∑
k=0

(
n

k

)2

=

(
n

0

)2

+

(
n

1

)2

+ · · ·+
(

n

n− 1

)2

+

(
n

n

)2

.

That is, both sides of (4.5) counts the number of ways of choosing n elements
out of a 2n-element set (or alternatively, the number of n-element subsets of
a 2n-element set), and therefore must be equal.

This idea can be used in a more general setting.
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Exercise 4.11. Prove that
l∑

k=0

(
n

k

)
·
(

m

l − k

)
=

(
n+m

l

)
, that is,(

n

0

)
·
(
m

l

)
+

(
n

1

)
·
(

m

l − 1

)
+ · · ·+

(
n

l

)
·
(
m

0

)
=

(
n+m

l

)
.(4.6)

How do we need to choose m and l so that (4.6) gives us the equality (4.5)?

We could have used the Binomial theorem to prove (4.5):

Second proof of Proposition 4.4. Consider (x+y)2n, and expand it using the
Binomial theorem:

(x+ y)2n =
2n∑
k=0

(
2n

k

)
x2n−k · yk.

Then the right hand side of (4.5) is the coefficient of the term xnyn. We
prove that the left hand side is the coefficient of xnyn, as well. For this, we
compute (x + y)2n by multiplying (x + y)n · (x + y)n after expanding both
factors using the Binomial theorem:

(x+ y)2n = (x+ y)n · (x+ y)n =

(
n∑

k=0

(
n

k

)
xn−kyk

)
·

(
n∑

k=0

(
n

k

)
xn−kyk

)
.

Now, let us compute the coefficient of xnyn. When do we obtain xnyn when
we multiply

(∑n
k=0

(
n
k

)
xn−kyk

)
by itself? Take for example xn from the first

factor, this must be multiplied by yn from the second factor to obtain xnyn.
The coefficient of xn in the first factor is

(
n
0

)
, the coefficient of yn in the

second factor is
(
n
n

)
, thus this multiplication contributes by

(
n
0

)
·
(
n
n

)
to the

coefficient of xnyn in (x+ y)2n. Similarly, take the term xn−1y from the first
factor, this must be multiplied by xyn−1 from the second factor to obtain
xnyn. The coefficient of xn−1y in the first factor is

(
n
1

)
, the coefficient of

xyn−1 in the second factor is
(

n
n−1

)
, thus this multiplication contributes by(

n
1

)
·
(

n
n−1

)
to the coefficient of xnyn in (x + y)2n. In general, for some k the

term xn−kyk in the first factor must be multiplied by xkyn−k from the second
factor. The coefficient of xn−kyk in the first factor is

(
n
k

)
, the coefficient of

xkyn−k in the second factor is
(

n
n−k

)
, thus this multiplication contributes by
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(
n
k

)
·
(

n
n−k

)
to the coefficient of xnyn in (x + y)2n. That is, the coefficient of

xnyn in (x+ y)2n is
n∑

k=0

(
n

k

)
·
(

n

n− k

)
.

Moreover, the coefficient of xnyn in (x + y)2n is
(
2n
n

)
, thus the two numbers

must be equal. Applying the symmetry of Pascal’s triangle (that is,
(
n
k

)
=(

n
n−k

)
), we obtain (4.5):

n∑
k=0

(
n

k

)2

=
n∑

k=0

(
n

k

)
·
(

n

n− k

)
=

(
2n

n

)
.

Exercise 4.12. Solve Exercise 4.11 using the Binomial theorem.

After dealing with sums of rows, consider sums where we move diagonally
upwards. That is, when we sum up themth elements of every row. Form = 0

it is pretty easy:(
n

0

)
+

(
n− 1

0

)
+ · · ·+

(
1

0

)
+

(
0

0

)
= n+ 1.

For m = 1 we have(
n

1

)
+

(
n− 1

1

)
+ · · ·+

(
2

1

)
+

(
1

1

)
= n+(n− 1)+ · · ·+2+1 =

n · (n+ 1)

2
,

by Proposition 2.1.
For m = 2 it is a bit harder to do the calculations, but still manageable:(

n

2

)
+

(
n− 1

2

)
+ · · ·+

(
3

2

)
+

(
2

2

)
=

n · (n− 1)

2
+

(n− 1) · (n− 2)

2
+ · · ·+ 3 · 2

2
+

2 · 1
2

=
1

2
· (n · (n− 1) + (n− 1) · (n− 2) + · · ·+ 3 · 2 + 2 · 1)

=
1

2
· (n+ 1) · n · (n− 1)

3
=

(n+ 1) · n · (n− 1)

3 · 2 · 1
.

Here, we used Exercise 3.6 to calculate the sum
∑n−1

i=1 i · (i+ 1).
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It is quite clear that by increasing m, we would have harder and harder
time to calculate the obtained sums. Nevertheless, only by computing the
first couple sums we can make a guess at the general answer:

for m = 0
n∑

k=0

(
k

0

)
= n+ 1,

for m = 1
n∑

k=1

(
k

1

)
=

(n+ 1) · n
2

,

for m = 2
n∑

k=2

(
k

2

)
=

(n+ 1) · n · (n− 1)

3 · 2
.

Now, hold on for a second! The right hand sides here are
(
n+1
1

)
,
(
n+1
2

)
,
(
n+1
3

)
,

respectively. From this, we may conjecture that in general the sum
∑n

k=m

(
k
m

)
will be

(
n+1
m+1

)
. This is indeed the case.

Proposition 4.5. The sum of mth elements of Pascal’s triangle is
(
n+1
m+1

)
,

that is,

(4.7)
n∑

k=m

(
k

m

)
=

(
m

m

)
+

(
m+ 1

m

)
+ · · ·+

(
n

m

)
=

(
n+ 1

m+ 1

)
.

Proof. We prove the proposition by induction on n. Fix m first, then the
induction starts by checking if the statement holds for the smallest possible
n, that is, for n = m. For n = m the left hand side is simply

(
m
m

)
= 1, the

right hand side is
(
m+1
m+1

)
= 1, and the statement holds. Let us assume now

that the statement holds for n− 1, that is,
n−1∑
k=m

(
k

m

)
=

(
m

m

)
+

(
m+ 1

m

)
+ · · ·+

(
n− 1

m

)
=

(
n

m+ 1

)
.

This is the induction hypothesis. Now we prove that the statement holds for
n, as well. Consider the sum

∑n
k=m

(
k
m

)
:

n∑
k=m

(
k

m

)
=

(
m

m

)
+

(
m+ 1

m

)
+ · · ·+

(
n− 1

m

)
︸ ︷︷ ︸

=( n
m+1), by the induction hypothesis

+

(
n

m

)

=

(
n

m+ 1

)
+

(
n

m

)
=

(
n+ 1

m+ 1

)
.
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Here, we first used the induction hypothesis, then the generating rule of
Pascal’s triangle (Proposition 4.1).

Again, the induction proof clearly settles that our conjecture was true,
but it does not clarify the reason why this identity holds. By finding combi-
natorial meaning to both sides of (4.7), we can understand what is “behind
the curtain”.

Second proof of Proposition 4.5. Again, the right hand side gives a clue on
what we need to find. Since

(
n+1
m+1

)
is the number of ways choosing m + 1

elements out of an n-element set, this is what we will try to find on the
left hand side, as well. Let S = { 1, 2, . . . , n, n+ 1 }. Try to choose m + 1

elements in the following way: first choose the largest one, then choose the
remaining m elements. Clearly the largest is at least m + 1. If we choose
m+ 1 as the largest chosen number, then we need to choose m elements out
of the m-element set { 1, 2, . . . ,m }, this can be done in

(
m
m

)
-many ways. If

we choose m + 2 as the largest chosen number, then we need to choose m

elements out of the (m+1)-element set { 1, 2, . . . ,m+ 1 }, this can be done in(
m+1
m

)
-many ways. If we choose m+3 as the largest chosen number, then we

need to choose m elements out of the (m+2)-element set { 1, 2, . . . ,m+ 2 },
this can be done in

(
m+2
m

)
-many ways. In general, if we choose k + 1 as

the largest chosen number (for some m ≤ k ≤ n), then we need to choose m

elements out of the k-element set { 1, 2, . . . , k }, this can be done in
(
k
m

)
-many

ways. If we choose n as the largest chosen number, then we need to choose m
elements out of the (n−1)-element set { 1, 2, . . . , n− 1 }, this can be done in(
n−1
m

)
-many ways. Finally, if we choose n + 1 as the largest chosen number,

then we need to choose m elements out of the n-element set { 1, 2, . . . , n },
this can be done in

(
n
m

)
-many ways. That is, the number of ways we can

choose (m+ 1) elements out of an (n+ 1)-element set is

n∑
k=m

(
k

m

)
=

(
m

m

)
+

(
m+ 1

m

)
+ · · ·+

(
n

m

)

on the one hand, and
(
n+1
m+1

)
on the other hand. Thus the two numbers must
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be equal, as they count the same thing. Hence,

n∑
k=m

(
k

m

)
=

(
m

m

)
+

(
m+ 1

m

)
+ · · ·+

(
n

m

)
=

(
n+ 1

m+ 1

)
.

Note, that from this identity we immediately obtain a formula for the
sum of integer numbers and for the sum of squares. Indeed,

1 + 2 + · · ·+ n =
n∑

k=1

k =
n∑

k=1

(
k

1

)
=

(
n+ 1

2

)
=

(n+ 1) · n
2

,

because k in
∑n

k=1 k can be expressed as
(
k
1

)
. Similarly, k2 =

(
k+1
2

)
+
(
k
2

)
by

Exercise 2.38 (for k ≥ 2). Thus

12 + 22 + · · ·+ n2 =
n∑

k=1

k2 = 1 +
n∑

k=2

((
k + 1

2

)
+

(
k

2

))
= 1 +

n∑
k=2

(
k + 1

2

)
+

n∑
k=2

(
k

2

)
=

(
2

2

)
+

n∑
k=2

(
k + 1

2

)
+

n∑
k=2

(
k

2

)

=
n∑

k=1

(
k + 1

2

)
+

n∑
k=2

(
k

2

)
=

n+1∑
k=2

(
k

2

)
+

n∑
k=2

(
k

2

)
=

(
n+ 2

3

)
+

(
n+ 1

3

)
=

(n+ 2) · (n+ 1) · n
3 · 2

+
(n+ 1) · n · (n− 1)

3 · 2

=
n · (n+ 1)

3 · 2
· ((n+ 2) + (n− 1))

=
n · (n+ 1) · (2n+ 1)

6
.

Exercise 4.13. Prove a similar identity for summing up numbers diagonally
in the other direction:

m∑
k=0

(
n+ k

k

)
=

(
n

0

)
+

(
n+ 1

1

)
+ · · ·+

(
n+m

m

)
=

(
n+m+ 1

m

)
.
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Exercise 4.14. Let p be a prime. Prove that every number in row p (except
for the first and last) is divisible by p. By observing the first 12 rows of
Pascal’s triangle, confirm that this property does not necessarily hold if p is
not a prime.



Chapter 5

Recurrence sequences

In this chapter we consider an important mathematical tool, the so-called
recurrence. It is a very useful problem solving strategy that solves a problem
by reducing it to smaller instances of the same problem.

5.1 Examples of recurrence relations

To compute n! by using recurrence we rewrite it as follows

n! =
n∏

k=1

k = n ·
n−1∏
k=1

k = n · (n− 1)!.

That is, we have the definition

n! =

1 if n = 1,

n · (n− 1)! if n > 1.

To compute 4! one has to evaluate 4 · (4− 1)!, so it remains to compute 3!,
applying the recurrence relation again it follows that 4! = 4 · 3 · (3− 1)!. At
the end we get that 4! = 4 · 3 · 2 · 1. Of course it is not an efficient way to
compute n!, but recurrence helps to understand and to analyze problems.

Binomial coefficients can be defined via recurrence. The main idea is to
use the well-known identity(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.
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The recursive definition goes as follows

(
n

k

)
=

1 if k = 0 or k = n(
n−1
k

)
+
(
n−1
k−1

)
if n > k > 0.

We apply the above definition to compute
(
5
3

)
:(

5

3

)
=

(
4

3

)
+

(
4

2

)
.

We only need to determine
(
4
3

)
and

(
4
2

)
.(

4

3

)
=

(
3

3

)
+

(
3

2

)
(
4

2

)
=

(
3

2

)
+

(
3

1

)
.

Since by definition
(
3
3

)
= 1, it remains to compute

(
3
2

)
and

(
3
1

)
.(

3

2

)
=

(
2

2

)
+

(
2

1

)
(
3

1

)
=

(
2

1

)
+

(
2

0

)
.

We have that
(
2
2

)
=
(
2
0

)
= 1 and

(
2
1

)
=
(
1
1

)
+
(
1
0

)
= 2. Therefore(

4

3

)
= 1 + 1 + 2(

4

2

)
= 1 + 2 + 2 + 1.

This implies that
(
5
3

)
= 1 + 1 + 2 + 1 + 2 + 2 + 1 = 10.

Geometric progressions can be defined using recurrence. Let gn be a
sequence with initial value a, that is, g0 = a. A generic term of the sequence
is given by the formula

gn = rgn−1,

where r is the common ratio of the sequence. By using this recurrence relation
we obtain the following results
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n gn

0 a

1 rg0 = ra

2 rg1 = r(ra) = r2a

3 rg2 = r(r2a) = r3a

It is easy to see the pattern, gn = rna. Now one may try to prove it by
induction.

Tower of Hanoi is a nice mathematical puzzle invented by Edouard Lucas
in 1883. There are given three pegs (A,B and C) and a tower of n disks,
initially stacked in decreasing size on peg A. The objective of the puzzle is
to transfer the n disks to peg C. There are only a few rules

• one can only move one disk per move,

• one can only move the top disk of a stack,

• one can not move a larger disk on top of a smaller disk.

If n = 1, then there is only one disk on peg A and moving it to peg C solves
the problem. Let us deal with the case of 2 disks. First we move the smallest
disk from peg A to peg B.

Now we move the disk from peg A to peg C.

Finally, we move the disk from peg B to peg C.
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Let us denote by Tn the minimum number of moves that will transfer n disks
from peg A to peg C. Since no moves are needed to transfer n = 0 disks,
we have that T0 = 0, and the previous two examples show that T1 = 1 and
T2 = 3. Let us prove that Tn ≤ 2Tn−1 + 1, that is, there is a solution with
2Tn−1 + 1 moves. In Tn−1 moves we can transfer the n − 1 smaller disks
from peg A to peg B. We move the largest one from peg A to peg C and it
remains to move the n − 1 smallest disks from peg B to peg C and it can
be done in Tn−1 moves. In total this strategy requires 2Tn−1 + 1 moves. We
only have to show that 2Tn−1 + 1 moves are necessary. If we follow another
strategy, then we must move the largest disk at some point and the n − 1

smallest disks must be on a single peg (requiring Tn−1 moves). After moving
the largest disk we must transfer the n−1 smallest disks to peg C (requiring
another Tn−1 moves). It means that Tn ≥ 2Tn−1 + 1, therefore

Tn = 2Tn−1 + 1.

We apply the above strategy to present a minimal solution in case of 3 disks.
First we move the 2 smallest disks from peg A to peg B. It can be done in
T2 = 3 steps.

STEP 1:

STEP 2:
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STEP 3:

Now we can transfer the largest disk to peg C.
STEP 4:

It remainst to transfer the 2 smallest disks from peg B to peg C, it
requires again T2 = 3 moves.

STEP 5:

STEP 6:

STEP 7:

Since T3 = 7 we have found a solution with minimal number of moves. Having
a recurrence relation for the minimal number of moves may help to find a
nice formula for Tn. The following table contains the first few values of Tn.
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n Tn n Tn n Tn

0 0 4 15 8 255
1 1 5 31 9 511
2 3 6 63 10 1023
3 7 7 127 11 2047

One can easily observe that these values are 1 less than a power of 2, that
is, we expect that Tn = 2n − 1. It can be proved by induction.

5.2 Linear recurrence relations of order k

In this section by a sequence we mean an ordered list

{ an }∞n=0 , an ∈ S

for some set S. For example

1, 2, 4, 8, 16, 32, 64, . . .

is a sequence containing non-negative powers of 2.

Definition 5.1. A sequence { an }∞n=0 is said to satisfy a linear recurrence
relation of order k if

an = cn−1an−1 + cn−2an−2 + . . .+ cn−kan−k + bn, cn−k 6= 0, n ≥ k,

where cn−1, . . . , cn−k, bn are some constants. If bn = 0, then we say that the
sequence satisfies a homogeneous linear recurrence relation of order k. In
case of a linear recurrence relation of order k the values of a0, a1, . . . , ak−1
are called the initial values of the sequence.

For example the sequence appeared in case of Tower of Hanoi is a sequence
of order 1:

T0 = 0,

Tn = 2Tn−1 + 1 for n ≥ 1.
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Theorem 5.2. Let { an }∞n=0 be a linear recurrence relation of order 1, that
is,

an = uan−1 + v

for some constants u, v. If u = 1, then

an = a0 + nv,

otherwise
an = una0 +

un − 1

u− 1
v.

Proof. If u = 1, then the defining equation simplifies as follows

an = an−1 + v.

We prove the statement by induction. The initial value of the sequence is a0.
Using the above formula for an we obtain

a1 = a0 + v,

a2 = a1 + v = a0 + 2v,

a3 = a2 + v = a0 + 3v.

Hence the statement is clearly true for n = 1, 2 and 3. Assume that the
statement is true for n = k, that is,

ak = a0 + kv.

The statement for n = k + 1 is that ak+1 = a0 + (k + 1)v. By the recurrence
definition we have ak+1 = ak + v. By induction we obtain that

ak+1 = a0 + kv + v = a0 + (k + 1)v,

which is the desired result for n = k + 1.
Now assume that u 6= 1. We apply induction again. As in the previous

case we compute the first few values of the sequence

a1 = ua0 + v,

a2 = ua1 + v = u2a0 + uv + v,

a3 = ua2 + v = u3a0 + u2v + uv + v.
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It follows that the statement is true if n = 1, 2, 3. Assume that the statement
is true for n = k, that is,

ak = uka0 +
uk − 1

u− 1
v.

We need to show that the statement is true for n = k+1, so ak+1 = uk+1a0+
uk+1−1
u−1 v. The recurrence definition yields that ak+1 = uak + v. Using the

assumption one has that

ak+1 = uak + v = u ·
(
uka0 +

uk − 1

u− 1
v

)
+ v = uk+1a0 + u

uk − 1

u− 1
v + v.

From the well-known identity um− 1 = (u− 1) · (um−1 + um−2 + . . .+ u+ 1)

one gets that
um − 1

u− 1
= um−1 + um−2 + . . .+ u+ 1

for u 6= 1. So we have uuk−1
u−1 · v + v = (uk + uk−1 + . . . + u)v + v = (uk +

uk−1 + . . .+ u+ 1) · v. Finally we obtain that

ak+1 = uk+1a0 + (uk + uk−1 + . . .+ u+ 1)v = uk+1a0 +
uk+1 − 1

u− 1
v,

and the statement follows.

It is easy to compute an explicit formula for the sequence Tn related to
the problem of Tower of Hanoi. Here Tn is defined as

T0 = 0,

Tn = 2Tn−1 + 1 for n ≥ 1,

that is, u = 2 and v = 1. The theorem implies that

Tn = unT0 +
un − 1

u− 1
v = 2n · 0 + 2n − 1

2− 1
· 1 = 2n − 1.

Consider another example, let an be a sequence defined by

a0 = 3,

an = 2an−1 + 2 for n ≥ 1.
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We apply the theorem and we have

an = 2n · 3 + 2n − 1

2− 1
· 2 = 2n · 3 + 2n+1 − 2 = 5 · 2n − 2.

We have proved a theorem about linear recurrence relations of order 1,
given such a recurrence we are able to provide an explicit formula. What
about higher order linear recurrence relations? To make the presentation
simpler we will consider homogeneous linear recurrence relations of order k,
where k ≥ 2. So we study the structure of the recurrence given by

(5.1) an = cn−1an−1 + cn−2an−2 + . . .+ cn−kan−k, cn−k 6= 0, n ≥ k,

where cn−1, . . . , cn−k are some constants.

Theorem 5.3. Assume that Un and Vn are sequences satisfying (5.1) and
s, t are constants. The linear combination

Wn = sUn + tVn

gives another solution of (5.1).

Proof. Since Un and Vn satisfy (5.1) we have

Un = cn−1Un−1 + cn−2Un−2 + . . .+ cn−kUn−k,

Vn = cn−1Vn−1 + cn−2Vn−2 + . . .+ cn−kVn−k.

Substituting these formulas into the definition of Wn we get

Wn =s(cn−1Un−1 + cn−2Un−2 + . . .+ cn−kUn−k)+

t(cn−1Vn−1 + cn−2Vn−2 + . . .+ cn−kVn−k) =

cn−1(sUn−1 + tVn−1) + cn−2(sUn−2 + tVn−2) + . . .+

+ cn−k(sUn−k + tVn−k) =

cn−1Wn−1 + cn−2Wn−2 + . . .+ cn−kWn−k.

It turned out that Wn is also a solution of (5.1).
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The previous theorem suggests a strategy to determine explicit formula
for higher order linear homogeneous recurrence relations. First we look for
solutions of the concrete recurrence relation, then we consider linear combi-
nations of them and we try to fix the constants in such a way that the initial
values of the given sequence are the same as in case of the sequence obtained
by linear combination. What kind of solutions should we look for? Here we
need some numerical experiences. Consider the example

a0 = 2,

a1 = 2,

an = 2an−1 + 3an−2, n ≥ 2.

The above sequence is a homogeneous linear recurrence sequence of order 2.
We can easily compute the first few elements of the sequence, a2 = 10, a3 =

26, a4 = 82. Let us consider the ratio of consecutive elements of the sequence.

n an
an−1

n an
an−1

1 1 5 ≈ 2.951

2 5 6 ≈ 3.017

3 2.6 7 ≈ 2.995

4 ≈ 3.154 8 ≈ 3.002

The ratios are very close to a constant, in this case very close to 3 for
n ∈ { 4, 5, 6, 7, 8 }. At the beginning of this chapter we studied sequences
for which the ratio of consecutive elements is a constant, these are geomet-
ric progressions. Let us look for geometric progressions satisfying the same
recurrence relation as an. If gn is a sequence given by the formula

gn = rgn−1,

where r is the common ratio of the sequence with initial value g0, then we
have that gn = g0r

n. That is, gn is a geometric progression. Let us assume
that for some initial value g0 and for some r the progression satisfies the same
recurrence relation as an. Now we obtain

gn = 2gn−1 + 3gn−2.
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It follows that
g0r

n = 2g0r
n−1 + 3g0r

n−2.

The constant zero progression is not useful for our purposes we assume that
g0 6= 0 and r 6= 0. After dividing by g0r

n−2 we get

r2 = 2r + 3.

If there is such a progression, then r is a root of the quadratic polynomial
r2 − 2r − 3. One can determine the roots by the well-known formula, which
is in our case

2±
√
4− 4(−3)
2

.

That is, the roots are 3 and −1. We have two different solutions of the
recurrence relation and Theorem 5.3 implies that linear combinations of these
two solutions yield another solutions. Let us consider the sequence Wn =

s3n + t(−1)n. We should fix s, t in such a way that

W0 = a0 = 2,

W1 = a1 = 2.

We get a system of equations in two unknowns

W0 = 2⇒ s · 30 + t · (−1)0 = 2,

W1 = 2⇒ s · 31 + t · (−1)1 = 2.

The first equation implies that t = 2−s. The second equation can be written
as 3s+(2− s)(−1) = 2, that is, 4s = 4 and we get that s = 1, t = 1. Now we
have a sequence Wn = 3n + (−1)n which satisfies the appropriate recurrence
relation and has the same initial values as an. Thus Wn = an. In this way
we obtained an explicit formula for the recurrence sequence an given by

3n + (−1)n.

We may try to apply the above method to determine an explicit formula for
the famous Fibonacci sequence:

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2, n ≥ 2.
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Let gn be a geometric progression such that gn = g0r
n for some g0 and r.

Assume that gn satisfies the recurrence relation. It follows that

r2 = r + 1.

The two roots of this quadratic polynomial are

1−
√
5

2
and

1 +
√
5

2
.

Let Wn be a linear combination of the appropriate geometric progressions,
that is,

Wn = s ·

(
1−
√
5

2

)n

+ t ·

(
1 +
√
5

2

)n

.

It remains to find s and t for which

W0 = F0 = 0,

W1 = F1 = 1.

The above equations imply that

s+ t = 0

s ·

(
1−
√
5

2

)
+ t ·

(
1 +
√
5

2

)
= 1.

We immediately get that t = −s. Therefore

s ·

(
1−
√
5

2

)
− s ·

(
1 +
√
5

2

)
= 1.

The latter equation yields that s = −
√
5

5
, so t =

√
5
5
. The explicit formula in

case of the Fibonacci sequence is

Fn =
−
√
5

5
·

(
1−
√
5

2

)n

+

√
5

5
·

(
1 +
√
5

2

)n

.
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Let us see if the previous argument works for homogeneous linear recurrence
sequence of order greater than 2. We define an as

a0 = 5,

a1 = −3,

a2 = 11,

an = −an−1 + 4an−2 + 4an−3, n ≥ 3.

The sequence an is a homogeneous linear recurrence sequence of order 3,
since an depends on the previous 3 elements of the sequence. We try to find
a geometric progression gn = g0r

n satisfying the above recurrence

g0r
n = −g0rn−1 + 4g0r

n−2 + 4g0r
n−3.

Again we exclude the case g0r = 0, so we may simplify the equation by
g0r

n−3. So we obtain
r3 + r2 − 4r − 4 = 0.

This time we have a cubic polynomial and finding the roots of a cubic is more
difficult than determining the roots of a quadratic polynomial. We may try
to find some special roots e.g. integral roots. To find integral roots we can
rewrite the equation in the form

r · (r2 + r − 4) = 4.

If r is an integer, then the expression on the left-hand side is a multiple of
two integers. The multiple of two integers is equal to 4, that is, we have only
a few possibilities since r has to divide 4. That is r ∈ {−4,−2,−1, 1, 2, 4 }.
Evaluate the cubic polynomial at these values:

r r3 + r2 − 4r − 4

-4 -36
-2 0
-1 0
1 -6
2 0
4 60
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We are lucky, there are 3 integral roots: −2,−1 and 2. It means by Theo-
rem 5.3 that any linear combinations of the geometric progressions (−2)n, (−1)n

and 2n will satisfy the same recurrence relation as an. Now define Wn =

s(−2)n + t(−1)n + u2n. Our task is to fix s, t and u such that

W0 = a0 = 5,

W1 = a1 = −3,

W2 = a2 = 11.

These equations yield a system of equations in three unknowns.

s+ t+ u = 5

−2s− t+ 2u = −3

4s+ t+ 4u = 11.

We can eliminate s and u using the first and the third equations. To do so
we multiply the first equation by 4:

4s+ 4t+ 4u = 20

−2s− t+ 2u = −3

4s+ t+ 4u = 11.

We subtract the third equation from the first one and we get

3t = 9,

that is, t = 3. The system of equations can be simplified now:

s+ u = 2

−2s+ 2u = 0.

The second equation implies that s = u, so from the first equation we have
that s = u = 1. The explicit formula for the sequence an is

(−2)n + 3 · (−1)n + 2n.

We remark that the previous argument does not work if we have a root
with multiplicity greater than 1. Without providing the details of the theory
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we note that it is also possible to handle such cases. For example assume
that a linear recurrence of order 2 is given and the corresponding quadratic
polynomial has a double root r. We have that rn and nrn are solutions of
the same recurrence. In general, if we have a linear recurrence of order k and
the corresponding polynomial has a root r with multiplicity m, then

rn, nrn, . . . nm−1rn

are solutions of the same recurrence. Let us consider an example.

u0 = 4,

u1 = −1,

u2 = −1,

u3 = −43,

un = 5un−1 − 6un−2 − 4un−3 + 8un−4, n ≥ 4.

The corresponding quartic polynomial r4− 5r3 +6r2 +4r− 8 can be written
as (r+1)(r−2)3, that is, −1 is a simple root and 2 is a root with multiplicity
3. Therefore we define Wn as

s · (−1)n + t · 2n + xn · 2n + yn2 · 2n.

Then we obtain four equations in four unknowns

s+ t = 4

−s+ 2t+ 2x+ 2y = −1

s+ 4t+ 8x+ 16y = −1

−s+ 8t+ 24x+ 72y = −43.

We get that s = 4− t, hence

3t+ 2x+ 2y = 3

3t+ 8x+ 16y = −5

9t+ 24x+ 72y = −39.
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Using the first equation we can eliminate t from the second and the third
equations.

6x+ 14y = −8

18x+ 66y = −48.

The above system has the solution x = 1, y = −1. We get that t = 1 and
s = 3. Thus

un = 3 · (−1)n + 2n + n · 2n − n2 · 2n.

As an application we deal with an inverse problem, let us be given the se-
quence

un =

(
3−
√
33

2

)n

+

(
3 +
√
33

2

)n

, n ≥ 0.

Our statement is that un is an integer sequence and 3 divides un for n ≥ 1.
This statement can be proved by induction (Exercise 3.9), but now we apply
the theory of linear recurrence sequences. We are given an explicit formula
and we would like to determine a linear recurrence sequence which has the
same closed-form solution. It is easy to see that u0 = 2 and u1 = 3. If
we have an appropriate recurrence, then 3−

√
33

2
and 3+

√
33

2
are roots of some

quadratic polynomial:(
r − 3−

√
33

2

)
·

(
r − 3 +

√
33

2

)
= r2 − 3r − 6.

From this polynomial we have the following recurrence relation un = 3un−1+

6un−2. That is, we have a recurrence sequence

u0 = 2,

u1 = 3,

un = 3un−1 + 6un−2 = 3(un−1 + 2un−2).

Since u0 and u1 are integers and un−1, un−2 have integral coefficients in the
recurrence relation, the sequence un is an integral sequence. It is clear that
u1 = 3 is divisible by 3 and similarly un = 3(un−1+2un−2) is a multiple of 3.
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Exercise 5.1. Find the shortest sequence of moves that transfers a tower of
4 disks from peg A to peg C.

Exercise 5.2. Find a closed-form formula for the following sequence defined
by:

an = 7an−1 − 10an−2 for n ≥ 2 and a0 = 0, a1 = 2.

Exercise 5.3. Find an explicit formula for the following sequence defined
by:

an = 4an−1 − 3an−2 for n ≥ 2 and a0 = 1, a1 = 13.

Exercise 5.4. Find a closed-form formula for the following sequence defined
by:

an = −2an−1 + an−2 + 2an−3 for n ≥ 3 and a0 = 0, a1 = 1, a2 = 2.

Exercise 5.5. Find an explicit formula for the following sequence defined
by:

an = 6an−1 − 11an−2 + 6an−3 for n ≥ 3 and a0 = 0, a1 = 0, a2 = 1.

Exercise 5.6. Find a closed-form formula for the following sequence defined
by:

an = 4an−1 − 4an−2 for n ≥ 2 and a0 = −1, a1 = 0.

Exercise 5.7. Find an explicit formula for the following sequence defined
by:

an = 5an−1 − 3an−2 − 9an−3 for n ≥ 3 and a0 = 3, a1 = 4, a2 = 29.

Exercise 5.8. Prove that the sequence defined by

un =

(
5− 3

√
5

2

)n

+

(
5 + 3

√
5

2

)n

, n ≥ 0

contains only integers and un is divisible by 5 if n ≥ 1.

Exercise 5.9. Prove that the sequence defined by

(4−
√
2)n + (4 +

√
2)n, n ≥ 0

contains only integers divisible by 2.



Chapter 6

Solutions

6.1 Introduction

1.1 There are three given sets A = { 3, 4, 6, 7, 8 } , B = { 2, 4, 5, 6, 8 } and
C = { 1, 2, 4, 5, 8 }. We have that

A \B = { 3, 7 }

C ∩B = { 2, 4, 5, 8 } .

Thus
(A \B) ∪ (C ∩B) = { 2, 3, 4, 5, 7, 8 } .

1.2 We have three sets A = { 1, 3, 4, 6, 7 } , B = { 2, 4, 5, 6, 8 } and C =

{ 1, 3, 4, 5, 8 }.

(A ∩B) = { 4, 6 }

(C ∩B) = { 4, 5, 8 } .

Therefore
(A ∩B) \ (C ∩B) = { 6 } .

1.3 Now the three given sets are A = { 1, 3, 4, 6, 7 } , B = { 2, 4, 6, 8 } and
C = { 1, 3, 4, 8 }.

(A \B) = { 1, 3, 7 }

(C \B) = { 1, 3 } .
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So we obtain
(A \B) ∪ (C \B) = { 1, 3, 7 } .

1.4 (a) The elements of the set are 7, 10 and 13.

(b) The elements of the set are 0, 1 and 4.

(c) The possible differences are 3− 1, 3− 2, 4− 1, 4− 2, 5− 1 and 5− 2,
thus the elements of the set are 1, 2, 3 and 4.

1.5 (a) { 2k | k ∈ { 1, 2, 3, 4, 5 } },

(b) { k2 | k ∈ { 1, 2, 3, 4, 5 } },

(c)
{
2−k | k ∈ N ∪ { 0 }

}
,

(d) { a/b | a, b ∈ N, b ≤ a ≤ 2b }.

1.6 (a)

A B

C

(b)

A B

C
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(c)

A B

C

(d)

A B

C

(e)

A B

C

(f)
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A B

C

1.7 The set A∩B∩C is a subset of all other sets for which we have certain
cardinality conditions, so we may set

A ∩B ∩ C = { 1, 2 } .

The conditions for |A ∩B|, |A ∩C| and |B ∩C| are satisfied. We have
that |A| = 4, that means that two elements are missing from A\(B∪C).
We let A\ (B∪C) = { 3, 4 }. Similarly for B \ (A∪C) and C \ (A∪B).
We obtain that

3,4 5,6

7,8

A B

C

1,2

1.8 Following the solution of Exercise 1.7 we get:
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4,5 6,7

8,9,10

A B

C

1,2

3

1.9 (a)
∑7

i=4 i = 4 + 5 + 6 + 7,

(b)
∑5

i=1(i
2 − i) = 0 + 2 + 6 + 12 + 20,

(c)
∑4

i=1 10
i = 10 + 100 + 1000 + 10000,

(d)
∑

2≤i≤5
1
2i
= 1

4
+ 1

8
+ 1

16
+ 1

32
,

(e)
∑

i∈S(−1)i, where S = { 2, 3, 5, 8 } is 1 + (−1) + (−1) + 1.

1.10 (a) 2 + 4 + 6 + 8 + 10 =
∑5

i=1 2i,

(b) 1 + 4 + 7 + 10 =
∑3

i=0(3i+ 1),

(c) 1
4
+ 1

2
+ 1 + 2 + 4 =

∑2
i=−2 2

i,

(d) 1
4
− 1

2
+ 1− 2 + 4 =

∑2
i=−2(−2)i.

1.11 (a)
∏−1

i=−4 i = (−4) · (−3) · (−2) · (−1),

(b)
∏4

i=1(i
2) = 1 · 4 · 9 · 16,

(c)
∏3

i=1 2
i = 2 · 4 · 8,

(d)
∏
−2≤i≤3

1
2i
= 4 · 2 · 1 · 1

2
· 1
4
· 1
8
,

(e)
∏

i∈S(−1)i, where S = { 2, 4, 6, 7 } is (−1)2 · (−1)4 · (−1)6 · (−1)7.

1.12 (a) 1 · 3 · 5 · 7 =
∏3

i=0(2i+ 1),

(b) (−1) · 2 · 5 · 8 =
∏3

i=0(3i− 1),

(c) 1
9
· 1
3
· 1 · 3 · 9 =

∏2
i=−2 3

i.
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1.13 The values are

0! = 1,

1! = 1,

2! = 2,

3! = 6,

4! = 24,

5! = 120,

6! = 720,

7! = 5 040,

8! = 40 320.

1.14 The values are

5 + 3! = 5 + 6 = 11,

(5 + 3)! = 8! = 40 320,

4− 2 · 3! = 4− 2 · 6 = 4− 12 = −8,

(4− 2) · 3! = (4− 2) · 6 = 2 · 6 = 12,

4− (2 · 3)! = 4− 6! = 4− 720 = −716,

3 · 2! = 3 · 2 = 6,

(3 · 2)! = 6! = 720,

4 · 3! = 4 · 6 = 24,

4! · 5 = 24 · 5 = 120.

1.15 Let

Sn = { k | k is a positive integer, k ≤ n } = { 1, 2, . . . , n } .

Then it is easy to see that Sn = Sn−1 ∪ {n }, that is, Sn is the disjoint
union of Sn−1 and {n }. Then by the definition of the factorial, we
have

n! =
∏
k∈Sn

k =

 ∏
k∈{n }

k

 ·
 ∏

k∈Sn−1

k

 = n · (n− 1)!.
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If n ≥ 2, then another proof could be

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1︸ ︷︷ ︸
(n−1)!

= n · (n− 1)!.

Nevertheless, the claim is true for n = 1, as well:

1! = 1 = 1 · 1 = 1 · 0!.

1.16 (a) We obtain that

678 = 1 · 567 + 111

567 = 5 · 111 + 12

111 = 9 · 12 + 3

12 = 4 · 3 + 0.

Thus gcd(678, 567) = 3. We work backwards to compute x and y :

3 = 111− 9 · 12

= 111− 9 · (567− 5 · 111) = −9 · 567 + 46 · 111

= −9 · 567 + 46 · (678− 567) = 46 · 678− 55 · 567.

Hence we have

46 · 678− 55 · 567 = gcd(678, 567) = 3.

(b) We get that

803 = 2 · 319 + 165

319 = 1 · 165 + 154

165 = 1 · 154 + 11

154 = 14 · 11 + 0.

It follows that gcd(803, 319) = 11. Now we find x and y :

11 = 165− 154

= 165− (319− 165) = −319 + 2 · 165

= −319 + 2 · (803− 2 · 319) = 2 · 803− 5 · 319.



136 SOLUTIONS

So we get the equation

2 · 803− 5 · 319 = gcd(803, 319) = 11.

(c) In this case the computations go as follows

2701 = 1 · 2257 + 444

2257 = 5 · 444 + 37

444 = 12 · 37 + 0.

Therefore gcd(2701, 2257) = 37. We determine x and y :

37 = 2257− 5 · 444

= 2257− 5(2701− 2257) = −5 · 2701 + 6 · 2257.

We have that

−5 · 2701 + 6 · 2257 = gcd(2701, 2257) = 37.

(d) The summary of the computations:

3397 = 1 · 1849 + 1548

1849 = 1 · 1548 + 301

1548 = 5 · 301 + 43

301 = 7 · 43 + 0.

That is, gcd(3397, 1849) = 43. It remains to compute x and y :

43 = 1548− 5 · 301

= 1548− 5(1849− 1548) = −5 · 1849 + 6 · 1548

= −5 · 1849 + 6(3397− 1849) = 6 · 3397− 11 · 1849.

Thus we obtain the equation

6 · 3397− 11 · 1849 = gcd(3397, 1849) = 43.
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1.17 Write 21 in base 2 first. Now, 16 is the highest 2-power not greater
than 21, 21 = 1 · 16+5, and we continue with the remainder 5. Now, 4
is the highest 2-power not greater than 5, 5 = 1 ·4+1, and we continue
with the remainder 1. Finally, 1 is the highest 2-power not greater than
1, 1 = 1 · 1 + 0. Thus

2110 = 1 · 16 + 1 · 4 + 1 · 1 = 1 · 24 + 1 · 22 + 1 · 20 = 101012.

Now, write 50 in base 3. Here, 27 is the highest 3-power not greater
than 50, 50 = 1 · 27 + 23, and we continue with the remainder 23.
Now, 9 is the highest 3-power not greater than 23, 23 = 2 · 9 + 5, and
we continue with the remainder 5. Now, 3 is the highest 3-power not
greater than 5, 5 = 1 · 3 + 2, and we continue with the remainder 2.
Finally, 1 is the highest 3-power not greater than 2, 2 = 2 · 1+0. Thus

5010 = 1 · 27+ 2 · 9+ 1 · 3+ 2 · 1 = 1 · 33 +2 · 32 +1 · 31 +2 · 30 = 12123.

Finally, write 2814 in base 16. Now, 256 is the highest 16-power not
greater than 2814 (the next 16-power is 4096), 2814 = 10 · 256 + 254,
and we continue with the remainder 254. Now, 16 is the highest 16-
power not greater than 254, 254 = 15 · 16 + 14, and we continue with
the remainder 14. Finally, 1 is the highest 16-power not greater than
14, 14 = 14 · 1 + 0. Thus

281410 = 10 ·256+15 ·16+14 ·1 = 10 ·162+15 ·161+14 ·160 = AFE16.

1.18 Rewrite 2110 into base 2 first.

21 = 10 · 2 + 1,

10 = 5 · 2 + 0,

5 = 2 · 2 + 1,

2 = 1 · 2 + 0,

1 = 0 · 2 + 1.
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The remainders backwards are 1, 0, 1, 0, 1, thus

2110 = 101012.

Now, rewrite 5010 into base 3.

50 = 16 · 3 + 2,

16 = 5 · 3 + 1,

5 = 1 · 3 + 2,

1 = 0 · 3 + 1.

The remainders backwards are 1, 2, 1, 2, thus

5010 = 12123.

Finally, rewrite 25010 into base 8.

250 = 31 · 8 + 2,

31 = 3 · 8 + 7,

3 = 0 · 8 + 3.

The remainders backwards are 3, 7, 2, thus

25010 = 3728.

1.19 (a)

1110011012 = 46110,

10101012 = 8510,

111112 = 3110,

101102 = 2210,

1010101012 = 34110,

100010002 = 13610,

10101112 = 8710,
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1111012 = 6110,

211023 = 20010,

12345 = 19410,

12347 = 46610,

12348 = 66810,

7778 = 51110,

3458 = 22910,

20128 = 103410,

45658 = 242110,

11238 = 59510,

6668 = 43810,

7418 = 48110,

CAB16 = 324310,

BEE16 = 305410,

EEE16 = 382210,

4D416 = 123610,

ABC16 = 274810,

9B516 = 248510,

DDD16 = 354910,

3F216 = 101010.

(b)

6410 = 10000002 = 21013 = 2245 = 1217 = 1008 = 719 = 4016,

5010 = 1100102 = 12123 = 2005 = 1017 = 628 = 559 = 3216,

1610 = 100002 = 1213 = 315 = 227 = 208 = 179 = 1016,

10010 = 11001002 = 102013 = 4005 = 2027 = 1448 = 1219

= 6416,

201210 = 111110111002 = 22021123 = 310225 = 56037 = 37348

= 26759 = 7DC16,
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20010 = 110010002 = 211023 = 13005 = 4047 = 3108 = 2429

= C816,

15110 = 100101112 = 121213 = 11015 = 3047 = 2278 = 1779

= 9716,

4810 = 1100002 = 12103 = 1435 = 667 = 608 = 539 = 3016,

9910 = 11000112 = 102003 = 3445 = 2017 = 1438 = 1209

= 6316,

99910 = 11111001112 = 11010003 = 124445 = 26257 = 17478

= 13309 = 3E716.

(c)

11213 = 4310 = 1010112,

43125 = 58210 = 14617,

6548 = 42810 = 5259,

AD216 = 277010 = 110357,

5438 = 35510 = 1110113,

5439 = 44410 = 1211103.

(d)

7778 = 1111111112 = 1FF16,

3458 = 111001012 = E516,

20128 = 100000010102 = 40A16,

4568 = 1001011102 = 12E16,

2358 = 100111012 = 9D16,

1478 = 11001112 = 6716,

7418 = 1111000012 = 1E116,

CAB16 = 1100101010112 = 62538,

BEE16 = 1011111011102 = 57568,

EEE16 = 1110111011102 = 73568,
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4D316 = 100110100112 = 23238,

ABC16 = 1010101111002 = 52748,

FEE16 = 1111111011102 = 77568,

9B516 = 1001101101012 = 46658,

3F216 = 11111100102 = 17628.
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6.2 Counting

2.1 Let n be odd first, like it was with n = 199. Then if we rearrange the
summands (first with last, second with one but last, etc.). then the
middle term will remain, which is n+1

2
:

1 + 2 + · · ·+ (n− 1) + n = (1 + n) + (2 + n− 1) + . . .

+

(
n− 1

2
+

n+ 3

2

)
+

n+ 1

2
= (n+ 1) + (n+ 1) + . . .

+ (n+ 1) +
n+ 1

2
= (n+ 1) · n− 1

2
+

n+ 1

2

= (n+ 1) ·
(
n− 1

2
+

1

2

)
=

(n+ 1) · n
2

.

If n is even, then after rearranging the summands, no term will remain:

1 + 2 + · · ·+ (n− 1) + n = (1 + n) + (2 + n− 1) + . . .

+

(
n

2
+

n+ 2

2

)
= (n+ 1) + (n+ 1) + . . .

+ (n+ 1) = (n+ 1) · n
2
=

(n+ 1) · n
2

.

2.2 If everyone shakes hands with three other, then they do not shake hand
with exactly one person. It is easier to consider who does not shake
hand with whom. The first person does not shake hand with someone.
Then of the remaining three people the first does not shake hand with
someone from these three. That leaves one person, who does not shake
hand with someone else, but everybody else has already been accounted
for about not shaking hands with somebody. Thus, it is not possible
that each of the five people shake hands with three others.

This argument does not work if someone is allowed to shake hands
with someone else more than once. Nevertheless, the answer is still no.
Use the same argument we used for proving Corollary 2.2. If we sum
up all the handshakes for everyone, we obtain 5 · 3 = 15, as each of
the 5 people shakes hand with 3 others. This way, we counted every
handshake twice, thus to obtain the number of handshakes we need
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to divide it by 2. But 15/2 is not an integer, while the number of
handshakes should be an integer. This contradiction proves that it is
not possible that each of 5 people shakes hand with 3 others.

For 7 people we can use this argument, again. If we sum up all the
handshakes for everyone, we obtain 7 · 3 = 21, as each of the 7 people
shakes hand with 3 others. This way, we counted every handshake
twice, thus to obtain the number of handshakes we need to divide it by
2. But 21/2 is not an integer, while the number of handshakes should
be an integer. This contradiction proves that it is not possible that
each of 7 people shakes hand with 3 others.

2.3 The four boys shake hands with each other, that is, 4·3
2

= 6 handshakes.
The four girls kisses each other, those are 4·3

2
= 6 kisses by the same

formula we use for handshakes. Finally, a boy and a girl kisses, as well.
All four boys kiss all four girls on the cheek, which is 4 · 4 = 16 more
kisses. Ultimately, there are 6 handshakes and 22 kisses.

2.4 (a) Not possible. If there are five packs, each of them containing odd
many rabbits, then altogether in the five packs there are odd many
rabbits (odd+odd+odd+odd+odd is odd). As 100 is not an odd
number, it is not possible to do the required distribution.

(b) It is possible, e.g. 3 · 3 · 1 · 1 · 1. Another possibility could be
9 · 1 · (−1) · 1 · (−1), or simply 9 (as only one integer).

(c) It is possible, e.g. 3 · 3 · 1 · 1 · 1 · 1 · (−1) · 1 · (−1), or another
possibility is 9 · 1 · (−1) · 1 · (−1) · 1 · (−1) · 1 · (−1).

(d) Not possible. If the product of integer numbers is 9, then all of
them are odd. But then the sum of 9 odd integer numbers is odd
again, and hence cannot be 0.

2.5 (a) We can apply Proposition 2.1 and obtain

1 + 2 + 3 + · · ·+ 23 + 24 =
24 · 25

2
= 300.
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(b) This is a bit more tricky, but not much. One needs to calculate
the denominator, as we just calculated the numerator. Now,

1− 2 + 3− 4 + · · ·+ 23− 24 = (1− 2) + (3− 4) + · · ·+ (23− 24)

(−1) + (−1) + · · ·+ (−1) = −12.

Thus the fraction we needed to compute is 300
−12 = −25.

Another way to calculate the denominator could have been the
following:

1− 2 + 3− 4 + · · ·+ 23− 24 = 1 + 2 + 3 + 4 + · · ·+ 23 + 24

− 2 · (2 + 4 + · · ·+ 24) = 300− 2 · 2 · (1 + 2 + · · ·+ 12)

= 300− 4 · 12 · 13
2

= 300− 312 = −12.

2.6 There is only one possibility for the first digit (it cannot be 0, only 1),
and there are two possibilities for every other digit. Thus, the number
of n-digit positive integers in base 2 is

1 · 2 · · · · · 2︸ ︷︷ ︸
n−1

= 2n−1.

2.7 If abc10 is a base 10 three-digit palindrome number, then a = c, and
a 6= 0. Thus we can choose a in 9-many ways and b in 10-many ways,
and hence the number of three-digit palindrome numbers is 9 ·10 = 90.

For determining the at most three-digit palindrome numbers, we need
to find the one-digit long and two-digit long palindrome numbers. Ev-
ery one-digit number is a palindrome number. There are exactly 9
two-digit palindrome numbers: the aa10 numbers for a 6= 0. That is,
there are 9 + 9 + 90 = 108 at most three-digit palindrome numbers.

Now, consider the number of n-digit palindrome numbers in base k.
One thing to note is that the first half of the number determines the
back half completely. Thus we need to count how many ways can we
choose the first half. Let n be even first. Then the first digit is the same
as the last digit and differs from 0: there are (k− 1)-many possibilities
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to choose for the first digit. The second digit is the same as the one but
last: there are k-possibilities to choose this digit, etc. Finally, the digit
at the n/2 position is the same as the digit at the n/2+1 position: there
are k possibilities to choose this digit. Thus, altogether the number of
n-digit base k palindrome numbers (for even n) is

(k − 1) · k · · · · · k︸ ︷︷ ︸
n/2−1

= (k − 1) · kn/2−1.

If n is odd, then the same argument works, except that the middle
digit will not have a pair. Thus, altogether the number of n-digit base
k palindrome numbers (for odd n) is

(k − 1) · k · · · · · k︸ ︷︷ ︸
(n−1)/2

= (k − 1) · k(n−1)/2.

2.8 There are 44 letters in the Hungarian alphabet, therefore there are
44n-many n letter long words in Hungarian by Theorem 2.5. That
is, 445, 447, 4410-many 5, 7, 10 letter long words can be created, respec-
tively.

2.9 There are three possibilities for every game, there are 14 games, thus
the number of required tickets is

3 · 3 · · · · · 3︸ ︷︷ ︸
14

= 314 = 4 782 969.

2.10 We apply Theorem 2.5. Now, we allow spaces, thus the alphabet con-
tains 27 letters. There are 2720 possibilities for a 20 letter long string
(name), 2 possibilities for the gender, 2710 possibilities for a 10 letter
long string (job title), and 108 possibilities for an at most 8 digit long
base 10 number (payment). Thus, the number of possibilities is

2720 · 2 · 2710 · 108.

2.11 The subsets of { 1, 2, 3 } are { } = ∅, { 1 }, { 2 }, { 3 }, { 1, 2 }, { 1, 3 },
{ 2, 3 }, { 1, 2, 3 }.
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The subsets of { a, b, c } are { } = ∅, { a }, { b }, { c }, { a, b }, { a, c },
{ b, c }, { a, b, c }.

The subsets of {Alice, Beth, Carrie } are { } = ∅, {Alice }, {Beth },
{Carrie }, {Alice, Beth }, {Alice, Carrie }, {Beth, Carrie }, and finally
{Alice, Beth, Carrie }.

The subsets of { apple, banana, cherry } are { } = ∅, { apple }, { banana },
{ cherry }, { apple, banana }, { apple, cherry }, { banana, cherry }, and
{ apple, banana, cherry }.

All sets have 8 subsets.

2.12 The set { a, b, c, d } has 16 subsets: { } = ∅, { a }, { b }, { c }, { d },
{ a, b }, { a, c }, { a, d }, { b, c }, { b, d }, { c, d }, { a, b, c }, { a, b, d }, { a, c, d },
{ b, c, d }, { a, b, c, d }.

The set { a, b, c, d, e } has 32 subsets: { } = ∅, { a }, { b }, { c }, { d },
{ e }, { a, b }, { a, c }, { a, d }, { a, e }, { b, c }, { b, d }, { b, e }, { c, d },
{ c, e }, { d, e }, { a, b, c }, { a, b, d }, { a, b, e }, { a, c, d }, { a, c, e }, { a, d, e },
{ b, c, d }, { b, c, e }, { b, d, e }, { c, d, e }, { a, b, c, d }, { a, b, c, e }, { a, b, d, e },
{ a, c, d, e }, { b, c, d, e }, { a, b, c, d, e }.

2.13 The decision algorithm is collected in the following table (T is the
subset of S = { a, b, c }):

a ∈ T a /∈ T

b ∈ T b /∈ T b ∈ T b /∈ T

c ∈ T c /∈ T c ∈ T c /∈ T c ∈ T c /∈ T c ∈ T c /∈ T

{ a, b, c } { a, b } { a, c } { a } { b, c } { b } { c } { } = ∅

First we decide whether or not a ∈ T , then (independently on our first
choice) we decide whether or not b ∈ T , then (independently on our
earlier choices) we decide whether or not c ∈ T . That way, we obtain
2 · 2 · 2 = 8 subsets.

2.14 There are 8 subsets of { a, b, c, d } not containing d: { } = ∅, { a },
{ b }, { c }, { a, b }, { a, c }, { b, c }, { a, b, c }. These are the subsets of
{ a, b, c }. There are 8 subsets of { a, b, c, d } containing d: { d }, { a, d },



6.2 Counting 147

{ b, d }, { c, d }, { a, b, d }, { a, c, d }, { b, c, d }, { a, b, c, d }. These are the
subsets of { a, b, c } with the element d added to them.

2.15 The binary representation of the subsets of { a, b, c, d } can be seen in
Table 6.1 on page 147.

Table 6.1: Subsets of { a, b, c, d } represented as binary numbers

subset of { a, b, c, d } binary number decimal number
{ } 00002 0
{ a } 00012 1
{ b } 00102 2
{ a, b } 00112 3
{ c } 01002 4
{ a, c } 01012 5
{ b, c } 01102 6
{ a, b, c } 01112 7
{ d } 10002 8
{ a, d } 10012 9
{ b, d } 10102 10
{ a, b, d } 10112 11
{ c, d } 11002 12
{ a, c, d } 11012 13
{ b, c, d } 11102 14
{ a, b, c, d } 11112 15

2.16 After computing the binary representation, we just add the elements
corresponding to the places where the digits are 1.

decimal number binary number subset of S
11 10112 { a0, a1, a3 }
7 01112 { a0, a1, a2 }
15 11112 { a0, a1, a2, a3 }



148 SOLUTIONS

2.17 After computing the binary representation, we just add the elements
corresponding to the places where the digits are 1.

decimal number binary number subset of S
11 010112 { a0, a1, a3 }
7 001112 { a0, a1, a2 }
15 011112 { a0, a1, a2, a3 }
16 100002 { a4 }
31 111112 { a0, a1, a2, a3, a4 }

Note, that the encoding was defined in such a way, that the sub-
set of { a0, a1, a2, a3 } corresponding to k is the same as the subset of
{ a0, a1, a2, a3, a4 } corresponding to k (for arbitrary 0 ≤ k ≤ 15).

2.18 After computing the binary representation, we just add the elements
corresponding to the places where the digits are 1.

decimal number binary number subset of S
49 1100012 { a0, a4, a5 }

2.19 After computing the binary representation, we just add the elements
corresponding to the places where the digits are 1.

decimal number binary number subset of S
101 11001012 { a0, a2, a5, a6 }

2.20 After computing the binary representation, we just add the elements
corresponding to the places where the digits are 1.

decimal number binary number subset of S
199 110001112 { a0, a1, a2, a6, a7 }

2.21 All possibilities are listed in Table 6.2 on page 149.

2.22 The number of permutations of { 1, 2, 3, 4 } is 4! = 24.

2.23 The number of permutations of { a, b, c, d } is 4! = 24.
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Table 6.2: The orders in which Ed, Frank, George and Hugo can take the
exam

first second third fourth
Ed Frank George Hugo
Ed Frank Hugo George
Ed George Frank Hugo
Ed George Hugo Frank
Ed Hugo Frank George
Ed Hugo George Frank

Frank Ed George Hugo
Frank Ed Hugo George
Frank George Ed Hugo
Frank George Hugo Ed
Frank Hugo Ed George
Frank Hugo George Ed
George Ed Frank Hugo
George Ed Hugo Frank
George Frank Ed Hugo
George Frank Hugo Ed
George Hugo Ed Frank
George Hugo Frank Ed
Hugo Ed Frank George
Hugo Ed George Frank
Hugo Frank Ed George
Hugo Frank George Ed
Hugo George Ed Frank
Hugo George Frank Ed

2.24 The number of permutations of 8 people is 8! = 40 320. If the boys sit
on seats from 1 to 5, and girls sit on seats from 6 to 8, then we need
to count the number of permutations of the boys and girls separately.
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The boys can sit on their seats in 5! = 120-many ways. The girls
(independently on how the boys sit) can sit on their seats in 3! = 6-
many ways. Altogether, they can sit in 6 · 120 = 720-many ways.

2.25 The number of anagrams of ‘retinas’ is the same as the number of
permutations of the letters ‘r’, ‘e’, ‘t’, ‘i’, ‘n’, ‘a’ and ‘s’. There are 7
different letters, hence the number of permutations is 7! = 5 040.

2.26 Again, let us color the ‘p’s in the anagrams by three colors: red, green,
blue. This way, there will be 5! = 120-many coloured anagrams of
puppy, the same as the number of permutations of five different el-
ements. Now, group together those anagrams, which only differ by
their colouring. For example the group ‘puppy’ would contain ‘puppy’,
‘puppy’, ‘puppy’, ‘puppy’, ‘puppy’, ‘puppy’. How do we know that
there are six coloured ‘puppy’s? The coloured ‘puppy’s only differ in
the colourings of the ‘p’s. The first ‘p’ can be coloured by 3 different
colours, the next ‘p’ (right after the ‘u’) can be coloured by two differ-
ent colours (it cannot be coloured by the same colour as the first ‘p’),
then the last ‘p’ should be coloured by the remaining colour. Thus,
there are 3 · 2 · 1 = 6-many coloured ‘puppy’s. Similarly, there are 6
coloured versions of every anagram. Therefore there are 120

6
= 20 (un-

coloured) anagrams of ‘puppy’. These are ‘pppuy’, ‘pppyu’, ‘ppupy’,
‘ppypu’, ‘ppuyp’, ‘ppyup’, ‘puppy’, ‘pyppu’, ‘pupyp’, ‘pypup’, ‘puypp’,
‘pyupp’, ‘upppy’, ‘ypppu’, ‘uppyp’, ‘yppup’, ‘upypp’, ‘ypupp’, ‘uyppp’,
‘yuppp’.

2.27 (a) The word ‘college’ contains 7 letters, two of them are ‘e’s and two
of them are ‘l’s, thus the number of anagrams is

7!

2! · 2!
=

5 040

2 · 2
= 1 260.

(b) The word ‘discrete’ contains 8 letters, two of them are ‘e’s, thus
the number of anagrams is

8!

2!
=

40 320

2
= 20 160.
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(c) The word ‘mathematics’ contains 11 letters, two of them are ‘a’s,
two of them are ‘m’s and two of them are ‘t’s, thus the number of
anagrams is

11!

2! · 2! · 2!
=

39 916 800

2 · 2 · 2
= 4 989 600.

(d) The expression ‘discrete mathematics’ contains 19 letters, two of
them are ‘i’s, two of them are ‘s’s, two of them are ‘c’s, three of
them are ‘e’s, three of them are ‘t’s, two of them are ‘m’s and two
of them are ‘a’s, thus the number of anagrams is

19!

2! · 2! · 2! · 3! · 3! · 2! · 2!
=

121 645 100 408 832 000

2 · 2 · 2 · 6 · 6 · 2 · 2
= 105 594 705 216 000.

(e) The expression ‘college discrete mathematics’ contains 26 letters,
three of them are ‘c’s, two of them are ‘l’s, five of them are ‘e’s,
two of them are ‘i’s, two of them are ‘s’s, three of them are ‘t’s,
two of them are ‘m’s and two of them are ‘a’s, thus the number of
anagrams is

26!

3! · 2! · 5! · 2! · 2! · 3! · 2! · 2!
=

403 291 461 126 605 635 584 000 000

6 · 2 · 120 · 2 · 2 · 6 · 2 · 2
= 2 917 328 277 825 561 600 000.

2.28 First solution. Let us create the (not meaningful) word ‘aaaaabbbbccc’,
and consider its anagrams. Put the bouquets into one particular order,
and consider an anagram. This anagram represents a distribution of
the bouquets among the triplets: if a letter is ‘a’ in the anagram,
the corresponding bouquet will be taken by Alice, if a letter is ‘b’ in
the anagram, the corresponding bouquet will be taken by Beth, if a
letter is ‘c’ in the anagram, the corresponding bouquet will be taken by
Carrie. For example, the distribution for the anagram ‘abcbbaaaccba’
is that Alice takes the first, sixth, seventh, eighth and twelfth bouquets,
Beth takes the second, fourth, fifth and eleventh bouquets, and Carrie
takes the third, ninth and tenth bouquets. This gives a one-to-one
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correspondence between the possible distributions of the bouquets and
the anagrams of ‘aaaaabbbbccc’. Therefore by Theorem 2.8 the number
of distributions is

12!

5! · 4! · 3!
=

479 001 600

120 · 24 · 6
= 27 720.

Second solution. Imagine that the triplets put the 12 bouquets in some
order, and then Alice takes the first 5, Beth takes the next four, and
Carrie takes the last three. Thus, the original order of the bouquets
determine who gets which bouquet. Of course, some of these orders
give the same result: if we only permute the first five elements or the
next four elements, or the final three elements, then clearly everyone
obtains exactly the same bouquets. Thus, the number of possible dis-
tributions is the number of permutations of the 12 bouquets, divided
by the number of permutations of the first five elements, the number of
permutations of the next four elements, the number of permutations of
the last three elements. That is, the number of possible distributions
is

12!

5! · 4! · 3!
=

479 001 600

120 · 24 · 6
= 27 720.

2.29 The two numbers are equal, as the following calculation shows

22!

16!
=

22 · 21 · 20 · 19 · 18 · 17 · 16!
16!

= 22 · 21 · 20 · 19 · 18 · 17.

2.30 Altogether there are n! possible orders for the n elements (this is the
number of permutations of n elements). But not all of these are con-
sidered to be different, because we are only interested in the first k

elements. Those cases will be considered the same where the first k

elements are the same (and in the same order). That is, we group to-
gether those permutations of the n elements, where the order of the
first k elements is the same. We can name every group with the order
of the first k elements. Thus, we are interested in the number of groups
we have. In one group there are those permutations, where the order
of the first k elements is the same, thus they only differ in the last
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(n− k) elements. There are (n− k)! possible permutations of the last
(n − k) elements, therefore every group contains (n − k)! orderings of
the n elements. Hence, the number of ordered k-element subsets is

n!

(n− k)!
=

n · (n− 1) · · · · · (n− k + 1) · (n− k)!

(n− k)!

= n · (n− 1) · · · · · (n− k + 1).

2.31 By Theorem 2.9 the number of possibilities

(a) for the first eight cars is

22 · 21 · 20 · 19 · 18 · 17 · 16 · 15 = 12 893 126 400,

(b) for the first ten cars is

22 · 21 · 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 = 2 346 549 004 800.

2.32 By Theorem 2.9 the number of ordered subsets is

(a)

10 · 9 · 8 = 720,

(b)

12 · 11 · 10 = 1 320,

(c)

10 · 9 · 8 · 7 = 5 040,

(d)

12 · 11 · 10 · 9 = 11 880,

(e)

8 · 7 · 6 · 5 · 4 = 6 720,

(f)

10 · 9 · 8 · 7 · 6 = 30 240.
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2.33 The two numbers are equal, as the following calculation shows

90!

5! · 85!
=

90 · 89 · 88 · 87 · 86 · 85!
5! · 85!

=
90 · 89 · 88 · 87 · 86

5!
.

2.34 The required binomial coefficients are computed and arranged into a
triangle in Table 6.3 on page 201.

2.35 By the definition(
n

0

)
=

n!

0! · (n− 0)!
=

n!

0! · n!
=

1

0!
=

1

1
= 1,(

n

1

)
=

n!

1! · (n− 1)!
=

n · (n− 1)!

1! · (n− 1)!
=

n

1!
=

n

1
= n,(

n

2

)
=

n!

2! · (n− 2)!
=

n · (n− 1) · (n− 2)!

2! · (n− 2)!
=

n · (n− 1)

2!
=

n · (n− 1)

2
,(

n

n− 2

)
=

n!

(n− 2)! · (n− (n− 2))!
=

n · (n− 1) · (n− 2)!

(n− 2)! · 2!
=

n · (n− 1)

2!

=
n · (n− 1)

2
,(

n

n− 1

)
=

n!

(n− 1)! · (n− (n− 1))!
=

n · (n− 1)!

(n− 1)! · 1!
=

n

1!
=

n

1
= n,(

n

n

)
=

n!

n! · (n− n)!
=

n!

n! · 0!
=

1

0!
=

1

1
= 1.

2.36 Using Table 6.3 from Exercise 2.34, it is not hard to determine the
required sums:

0∑
k=0

(
0

k

)
=

(
0

0

)
= 1,

1∑
k=0

(
1

k

)
=

(
1

0

)
+

(
1

1

)
= 1 + 1 = 2,

2∑
k=0

(
2

k

)
=

(
2

0

)
+

(
2

1

)
+

(
2

2

)
= 1 + 2 + 1 = 4,

3∑
k=0

(
3

k

)
=

(
3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 1 + 3 + 3 + 1 = 8,

4∑
k=0

(
4

k

)
=

(
4

0

)
+

(
4

1

)
+

(
4

2

)
+

(
4

3

)
+

(
4

4

)
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= 1 + 4 + 6 + 4 + 1 = 16,

5∑
k=0

(
5

k

)
=

(
5

0

)
+

(
5

1

)
+

(
5

2

)
+

(
5

3

)
+

(
5

4

)
+

(
5

5

)
= 1 + 5 + 10 + 10 + 5 + 1 = 32,

6∑
k=0

(
6

k

)
=

(
6

0

)
+

(
6

1

)
+

(
6

2

)
+

(
6

3

)
+

(
6

4

)
+

(
6

5

)
+

(
6

6

)
= 1 + 6 + 15 + 20 + 15 + 6 + 1 = 64.

2.37 Now, n divides
(
n
2

)
if and only if the quotient

(
n
2

)
/n is an integer. Here(

n
2

)
n

=
n·(n−1)

2

n
=

n− 1

2
,

and this is an integer number if and only if 2 - n, that is, if and only if
n is odd.

2.38 Using the formula for
(
n+1
2

)
and

(
n
2

)
we have(

n+ 1

2

)
+

(
n

2

)
=

(n+ 1) · n
2

+
n · (n− 1)

2
=

n2 + n

2
+

n2 − n

2

=
n2 + n+ n2 − n

2
=

2n2

2
= n2.

2.39 Let the pirates be P1, . . . , Pn. They put the gold pieces in a line. Then
they want to divide it into n parts by putting sticks between gold pieces.
The leftmost part will go to P1, the next part from left goes to P2, etc.
The rightmost part will go to Pn. To this end, they use n− 1 sticks to
divide the k gold pieces into n parts. What is left from the first stick
is for P1, what is between the first and second sticks is for P2, etc.,
and everything right from the last stick is taken by Pn. They can put
the sticks between gold pieces. They cannot put a stick before the first
gold piece, because then P1 would not get any pieces. Similarly, they
cannot put a stick after the last gold piece, because Pn needs to receive
at least one gold piece. Finally, they cannot put two sticks between the
same two gold pieces, because then one of the pirates would not get
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any gold piece. Thus, they need to put n − 1 sticks somewhere in the
spaces between the gold pieces, but they cannot put two sticks between
the same two gold pieces. That is, they need to find which n−1 places
they put sticks to. There are k − 1 places between k gold pieces, and
they need to find n− 1, where they put the n− 1 sticks. This can be
done in

(
k−1
n−1

)
-many ways.

2.40 Let every pirate take one gold piece right at the very beginning. Then
there remains k − n gold pieces to further distribute. Moreover, now
every pirate needs one more gold piece. Thus we reduced the problem to
the one solved in Theorem 2.15: n pirates want to distribute k−n gold
pieces such that everyone gets at least one gold piece. By Theorem 2.15
this can be done in

(
k−n−1
n−1

)
-many ways.

2.41 All 15 possibilities are written in Table 6.4 on page 202.

2.42 By applying Theorem 2.18, we obtain

(a) (
9− 1

3− 1

)
=

(
8

2

)
= 28,

(b) (
8 + 3− 1

3− 1

)
=

(
10

2

)
= 45,

(c) (
7 + 3− 1

3− 1

)
=

(
9

2

)
= 36,

(d) (
11− 3− 1

3− 1

)
=

(
7

2

)
= 21,

(e) (
9− 1

4− 1

)
=

(
8

3

)
= 56,

(f) (
7 + 4− 1

4− 1

)
=

(
10

3

)
= 120,
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(g) (
12− 4− 1

4− 1

)
=

(
7

3

)
= 35,

(h) (
10− 1− 2− 3 + 4− 1

4− 1

)
=

(
7

3

)
= 35,

(i) (
15− 1− 2− 3− 4 + 4− 1

4− 1

)
=

(
8

3

)
= 56,

(j) (
15− 1− 1− 3− 3 + 5− 1

5− 1

)
=

(
11

4

)
= 330.

2.43 By applying Corollary 2.19, we obtain that the number of solutions is

(a) (
9− 1

3− 1

)
=

(
8

2

)
= 28,

(b) (
8 + 3− 1

3− 1

)
=

(
10

2

)
= 45,

(c) (
7 + 3− 1

3− 1

)
=

(
9

2

)
= 36,

(d) (
11− 3− 1

3− 1

)
=

(
7

2

)
= 21,

(e) (
9− 1

4− 1

)
=

(
8

3

)
= 56,

(f) (
7 + 4− 1

4− 1

)
=

(
10

3

)
= 120,

(g) (
12− 4− 1

4− 1

)
=

(
7

3

)
= 35,
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(h) (
10− 1− 2− 3 + 4− 1

4− 1

)
=

(
7

3

)
= 35,

(i) (
15− 1− 2− 3− 4 + 4− 1

4− 1

)
=

(
8

3

)
= 56,

(j) (
15− 1− 1− 3− 3 + 5− 1

5− 1

)
=

(
11

4

)
= 330.

2.44 It is the same problem as the gold distribution: imagine that everybody
of the three siblings gets the brand they like. Then the problem is
equivalent to distributing 10 desserts among the three children such
that everyone gets at least one. There are

(
10−1
3−1

)
=
(
9
2

)
= 45-many

ways to do this by Theorem 2.18.

2.45 Applying Table 2.9 we obtain that the number of choices is

(a) (
9 + 3− 1

3

)
=

(
11

3

)
= 165,

(b) (
9 + 3− 1

9

)
=

(
11

9

)
= 55,

(c)
10!

5!
= 30 240,

(d)

0,

(e) (
45

6

)
= 8 145 060,

(f)

0,
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(g)
10010 = 1020,

(h)
10100.
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6.3 Proof Techniques

3.1 The statement S(n) is that 8 divides 9n − 1. Clearly we have

91 − 1 = 8 = 1 · 8,

92 − 1 = 80 = 10 · 8.

Hence S(1) is true and S(2) is true as well. Assume that S(k) is true
for some k ∈ N. It remains to prove that S(k+1) is true. We have that
S(k) is true, that is, 8 divides 9k − 1. Hence there exists an integer A
such that 9k− 1 = 8 ·A. It remains to prove that 9k+1− 1 is a multiple
of 8. We have that

9(9k − 1) = 8 · A · 9.

Hence we get

9k+1 − 1 = 8 · A · 9 + 8 = 8(9A+ 1).

That is, 8 divides 9k+1 − 1. Thus S(k + 1) is true, so the statement is
true for all positive integers.

3.2 The statement S(n) is that 6 divides 52n−1 + 1. We compute 52n−1 + 1

for some small values:

52·1−1 + 1 = 6 = 1 · 6,

52·2−1 + 1 = 126 = 21 · 6.

It is now obvious that S(1) is true and S(2) is true, too. Assume that
S(k) is true for some k ∈ N. That is, there exists A such that

52k−1 + 1 = 6 · A.

We multiply this latter equation by 52 :

52 · 52k−1 + 52 = 6 · A · 52.

We would like to have the expression of S(k+1) on the left-hand side,
that is, 52(k+1)−1 + 1 = 52k+1 + 1. So we subtract 24 to obtain

52k+1 + 1 = 6 · A · 52 − 24 = 6(25A− 4).
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It follows that 6 divides 52k+1 + 1, hence S(k + 1) is true. We have
proved that S(n) is true for all positive integers.

3.3 Here we deal with the sum of the first n odd integers. For n ∈
{ 1, 2, 3, 4, 5 } we have

n
∑n

i=1(2i− 1)

1 1 = 12

2 1 + 3 = 22

3 1 + 3 + 5 = 32

4 1 + 3 + 5 + 7 = 42

5 1 + 3 + 5 + 7 + 9 = 52

Hence the given formula provides correct answers. Let S(n) be the
statement that the sum of the first n odd integers is n2. We have
already proved that S(1) is true. Assume that S(k) is true for some
k ≥ 1, that is,

k∑
i=1

(2i− 1) = k2.

It remains to show that S(k + 1) is true, that is,

k+1∑
i=1

(2i− 1) = (k + 1)2.

The left-hand side can be written as
k+1∑
i=1

(2i− 1) = (1 + 3 + . . .+ (2k − 1)) + (2k + 1).

By the induction hypotheses we have

(1 + 3 + . . .+ (2k − 1)) = k2,

so we obtain

(1 + 3 + . . .+ (2k − 1)) + (2k + 1) = k2 + 2k + 1 = (k + 1)2.

Thus the statement S(k + 1) is true and the result follows.
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3.4 We consider here the sum of the first n squares, which is

12 + 22 + . . .+ n2.

The statement S(n) is that

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

The statement is clearly true for n = 1, since 12 = 1·2·3
6

. Assume that
the statement is true for certain k ≥ 1, that is,

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
.

Let us study S(k+1). The sum of the first k+1 squares can be written
as the sum of the first k squares increased by (k+1)2, that is, we have

k+1∑
i=1

i2 =

(
k∑

i=1

i2

)
+ (k + 1)2.

The induction hypotheses says that

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
,

hence we obtain
k+1∑
i=1

i2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2.

The right-hand side equals to

k(k + 1)(2k + 1)

6
+

6(k + 1)2

6
=

(k + 1) (k(2k + 1) + 6(k + 1))

6
=

=
(k + 1)(2k2 + 7k + 6)

6
=

(k + 1)(k + 2)(2k + 3)

6
.

Therefore S(k + 1) is true and the problem has been solved.

3.5 We list the sum of the first n cubes in the following table for n ∈
{ 1, 2, 3, 4 }.
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n
∑n

i=1 i
3

1 13 = 1 =
(
1·2
2

)2
2 13 + 23 = 9 =

(
2·3
2

)2
3 13 + 23 + 33 = 36 =

(
3·4
2

)2
4 13 + 23 + 33 + 43 = 100 =

(
4·5
2

)2
The statement S(n) to prove is that

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

.

We showed that S(1), S(2), S(3) and S(4) are true. Assume that for
some 1 ≤ k ∈ N the statement S(k) is true. We try to conclude that
S(k + 1) is true. We have

k+1∑
i=1

i3 =

(
k∑

i=1

i3

)
+ (k + 1)3.

By the induction hypothesis we can write the right-hand side as(
k(k + 1)

2

)2

+ (k + 1)3 =
k2(k + 1)2 + 4(k + 1)3

4
=

(k + 1)2

4
(k2 + 4k + 4) =

(
(k + 1)(k + 2)

2

)2

.

It follows that S(k+ 1) is true and therefore the identity is true for all
positive integers n.

3.6 Let S(n) be the statement that

n−1∑
i=1

i(i+ 1) =
(n− 1)n (n+ 1)

3
.

If n = 2, then the left-hand side is

1∑
i=1

i(i+ 1) = 2,
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and the right-hand side is 1·2·3
3

, hence S(1) is true. Assume that S(k)
is true for some 1 ≤ k ∈ N. The statement S(k + 1) says that

k∑
i=1

i(i+ 1) =
k (k + 1) (k + 2)

3
.

On the other hand, by the induction hypothesis

k∑
i=1

i(i+ 1) =

(
k−1∑
i=1

i(i+ 1)

)
+ k(k + 1) =

=
(k − 1) k (k + 1)

3
+ k(k + 1) =

(k − 1) k (k + 1) + 3k(k + 1)

3
=

=
k (k + 1) (k + 2)

3
.

Therefore S(k + 1) is true and the identity

n−1∑
i=1

i(i+ 1) =
(n− 1)n (n+ 1)

3

is valid for all positive integers n.

3.7 Let S(n) be the statement that

n∑
i=1

1

i(i+ 1)
=

n

n+ 1
.

If n = 1, then the left-hand side is

1∑
i=1

1

i(i+ 1)
=

1

2
,

and the right-hand side is 1
2
, hence S(1) is true. Assume that S(k) is

true for some 1 ≤ k ∈ N. The statement S(k + 1) says that

k+1∑
i=1

1

i(i+ 1)
=

k + 1

k + 2
.
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On the other hand, by the induction hypothesis

k+1∑
i=1

1

i(i+ 1)
=

(
k∑

i=1

1

i(i+ 1)

)
+

1

(k + 1)(k + 2)
=

=
k

k + 1
+

1

(k + 1)(k + 2)
=

k(k + 2) + 1

(k + 1)(k + 2)
=

=
(k + 1)2

(k + 1)(k + 2)
=

k + 1

k + 2
.

Therefore S(k + 1) is true and the identity

n∑
i=1

1

i(i+ 1)
=

n

n+ 1

is valid for all positive integers n.

3.8 Let us compute the first few elements of the sequence

n an

1 1
2 8
3 a2 + 2a1 = 10

4 a3 + 2a2 = 26

5 a4 + 2a3 = 46

Now we compute the values of the formula 3
2
· 2n + 2 · (−1)n for n ∈

{ 1, 2, 3, 4, 5 }

n 3
2
2n + 2(−1)n

1 1
2 8
3 10
4 26
5 46

We checked that an = 3
2
· 2n + 2 · (−1)n for n ∈ { 1, 2, 3, 4, 5 }. Assume

that the statement is true for S(k − 1) and S(k) for some 2 ≤ k ∈ N,
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that is,

ak−1 =
3

2
· 2k−1 + 2 · (−1)k−1,

ak =
3

2
· 2k + 2 · (−1)k.

The statement for k+1 is that ak+1 =
3
2
·2k+1+2·(−1)k+1. By definition

we have that
ak+1 = ak + 2ak−1.

Hence by the induction hypotheses we obtain

ak+1 =
3

2
· 2k + 2 · (−1)k + 2

(
3

2
· 2k−1 + 2 · (−1)k−1

)
.

A direct computation yields that

ak+1 =
3

2
· 2k+1 + 2 · (−1)k+1,

which is the statement we wanted to prove. We showed that the given
formula is correct.

3.9 We note that there is a solution in Chapter 5 which does not use in-
duction. Here we will prove it by induction. Our statement S(n) is
that the number

f(n) =

(
3−
√
33

2

)n

+

(
3 +
√
33

2

)n

is an integer and it is a multiple of 3. Let us consider the statement for
n = 1 and 2. If n = 1, then we get that f(1) = 3. So it is an integer
and it is a multiple of 3. If n = 2, then we have

f(2) =
9− 6

√
33 + 33

4
+

9 + 6
√
33 + 33

4
= 21.

Again we obtained an integer that is divisible by 3. Assume that S(k−
1) and S(k) are true for some 2 ≤ k ∈ N. We will use the fact that the
numbers 3−

√
33

2
and 3+

√
33

2
are roots of the quadratic equation

x2 − 3x− 6,
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that is, we have (
3−
√
33

2

)2

= 3 ·

(
3−
√
33

2

)
+ 6,(

3 +
√
33

2

)2

= 3 ·

(
3 +
√
33

2

)
+ 6.

The induction hypothesis says that f(k−1) and f(k) are integers which
are multiples of 3. What about the number f(k + 1)? We have

f(k + 1) =

(
3−
√
33

2

)k+1

+

(
3 +
√
33

2

)k+1

=(
3−
√
33

2

)k−1(
3 ·

(
3−
√
33

2

)
+ 6

)
+

(
3 +
√
33

2

)k−1(
3 ·

(
3 +
√
33

2

)
+ 6

)
=

3 ·

(3−
√
33

2

)k

+

(
3 +
√
33

2

)k
+ 6 ·

(3−
√
33

2

)k−1

+

(
3 +
√
33

2

)k−1
 =

3f(k) + 6f(k − 1).

Since f(k − 1) and f(k) are integers we see that f(k + 1) is an integer
and it is a multiple of 3.

3.10 We compute an for some n :

n an

1 ≈ 1.4142

2 ≈ 1.8477

3 ≈ 1.9615

4 ≈ 1.9903

5 ≈ 1.9975

Let S(n) be the statement that an ≤ 2. Our computations show that
S(1) is true. Assume that S(k) is true for some k ≥ 1, that is, ak ≤ 2.
We consider the statement S(k + 1). By definition of the sequence we
have

ak+1 =
√
2 + ak.
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By the induction hypothesis ak ≤ 2, hence

ak+1 ≤
√
2 + 2 = 2.

The statement S(k+1) has been proved and thus we have that an ≤ 2

for all n ∈ N.

3.11 We prove the statement by induction. If n = 1, then the 1-digit integer
a1 = 2 is divisible by 2. Therefore the statement is true for n = 1. It is
not difficult to deal with the case n = 2. There are only four possible
integers

a1a2 ∈ { 11, 12, 21, 22 } .

It is easy to see that 22 divides 12. Assume that the statement is true
for some 1 ≤ k ∈ N, that is, there exists a k-digit integer a1a2 . . . ak

which is a multiple of 2k. Let us consider the statement for k + 1. By
induction hypothesis we have

a1a2 . . . ak = 2k · A.

We claim that either

10k + a1a2 . . . ak = 1a1a2 . . . ak

or
2 · 10k + a1a2 . . . ak = 2a1a2 . . . ak

is a multiple of 2k+1. We can rewrite the above integers as follows

10k + a1a2 . . . ak = 10k + 2k · A = 2k(5k + A),

2 · 10k + a1a2 . . . ak = 2 · 10k + 2k · A = 2k(2 · 5k + A).

If A is odd, then 5k + A is even. In this case

1a1a2 . . . ak

is an integer having k+1 digits and it is divisible by 2k+1. If A is even,
then 2 · 5k + A is even. That is,

2a1a2 . . . ak

is a (k + 1)-digit number which is a multiple of 2k+1.
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3.12 (a) The first few elements of the Fibonacci sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Let us consider the sum of the first n elements for n ∈ { 1, 2, 3, 4, 5 }

n = 1 : 1,

n = 2 : 1 + 1 = 2,

n = 3 : 1 + 1 + 2 = 4,

n = 4 : 1 + 1 + 2 + 3 = 7,

n = 5 : 1 + 1 + 2 + 3 + 5 = 12.

It is easy to see that the identity holds for n ∈ { 1, 2, 3, 4, 5 }. Assume
that the statement is true for some 1 ≤ k ∈ N, that is,

F1 + F2 + . . .+ Fk = Fk+2 − 1.

Consider the sum of the first k + 1 Fibonacci numbers

F1 + F2 + . . .+ Fk + Fk+1.

By induction hypothesis we get

F1 + F2 + . . .+ Fk + Fk+1 = Fk+2 − 1 + Fk+1.

By definition Fk+1 + Fk+2 = Fk+3, hence

F1 + F2 + . . .+ Fk + Fk+1 = Fk+3 − 1.

Therefore the identity holds for all positive integers.

(b) Compute F 2
1 + F 2

2 + . . .+ F 2
n for n ∈ { 1, 2, 3, 4, 5 }

n = 1 : 12 = 1 = F1F2,

n = 2 : 12 + 12 = 2 = F2F3,

n = 3 : 12 + 12 + 22 = 6 = F3F4,

n = 4 : 12 + 12 + 22 + 32 = 15 = F4F5,

n = 5 : 12 + 12 + 22 + 32 + 52 = 40 = F5F6.
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That is, the identity is valid for n ∈ { 1, 2, 3, 4, 5 }. Assume that the
statement is true for some 1 ≤ k ∈ N, that is,

F 2
1 + F 2

2 + . . .+ F 2
k = FkFk+1.

Let us deal with the sum

F 2
1 + F 2

2 + . . .+ F 2
k + F 2

k+1.

Applying the induction hypothesis we obtain

(F 2
1 + F 2

2 + . . .+ F 2
k ) + F 2

k+1 = FkFk+1 + F 2
k+1 = Fk+1(Fk + Fk+1),

and by definition Fk + Fk+1 = Fk+2, so we have

(F 2
1 + F 2

2 + . . .+ F 2
k ) + F 2

k+1 = Fk+1Fk+2.

Thus the identity holds for all positive integers.

(c) Here we consider the identity

F1 + F3 + . . .+ F2n−1 = F2n.

If n = 1, then the left-hand side is F1 = 1 and the right-hand side is
F2 = 1. Hence the identity holds. Assume that for some 1 ≤ k ∈ N
the identity is valid, that is,

F1 + F3 + . . .+ F2k−1 = F2k.

In case of k + 1 terms we have

F1 + F3 + . . .+ F2k−1 + F2k+1.

By induction we get

(F1 + F3 + . . .+ F2k−1) + F2k+1 = F2k + F2k+1 = F2k+2 = F2(k+1).

Thus the identity is valid for all positive integers.

(d) The identity to prove is as follows:

F2 + F4 + . . .+ F2n = F2n+1 − 1.
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If n = 1, then the left-hand side is F2 = 1 and the right-hand side is
F3 − 1 = 2 − 1 = 1. So the identity is valid. Assume that for some
1 ≤ k ∈ N the identity holds, that is,

F2 + F4 + . . .+ F2k = F2k+1 − 1.

Let us handle the sum for k + 1 terms, that is, the sum

F2 + F4 + . . .+ F2k + F2k+2.

It can be written as

(F2 + F4 + . . .+ F2k) + F2k+2 = F2k+1 − 1 + F2k+2 = F2k+3 − 1.

Thus the identity has been proved for all positive integers.

3.13 (a) First compute F3n for some n, let say for n = 1, 2, 3. We have

F3 = 2,

F6 = 8,

F9 = 34.

We checked that F3n is even for n = 1, 2, 3. Assume that F3k is even
for some 1 ≤ k ∈ N. For k + 1 we have F3(k+1) = F3k+3. By definition

F3k+3 = F3k+2 + F3k+1 = F3k+1 + F3k + F3k+1 = 2 · F3k+1 + F3k.

By induction F3k is even, so 2 · F3k+1 + F3k is even. The statement is
true.

(b) If n = 1, then F5·1 = 5. That is, the property holds for n = 1.
Assume that F5k is a multiple of 5 for some 1 ≤ k ∈ N. For k + 1 we
have

F5(k+1) = F5k+5 = F5k+4 + F5k+3 = F5k+3 + F5k+2 + F5k+2 + F5k+1 =

3F5k+2 + 2F5k+1 = 3(F5k+1 + F5k) + 2F5k+1 = 5F5k+1 + 3F5k.

It is clear that 5 divides 5F5k+1 and induction hypothesis implies that
3F5k is a multiple of 5. Therefore 5 divides 5F5k+1 + 3F5k. We proved
the property for k + 1. It follows that F5n is a multiple of 5 for all
n ∈ N.
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3.14 We provide an indirect proof. Assume that x ≤ 5 and y ≤ 5. We
obtain that

x+ y ≤ 10,

a contradiction, since x+ y > 10, by assumption.

3.15 Suppose the opposite of the statement, that is, there exists an integer
n for which n2 − 2 is divisible by 4. Then for some k ∈ Z we have
n2 − 2 = 4k. Hence n2 = 2(2k + 1). It follows that n is even, so
n = 2n1 for some integer n1. We obtain that

4n2
1 = 2(2k + 1).

After dividing the equation by 2 we get

2(n2
1 − k) = 1,

a contradiction since 2 does not divide 1.

3.16 Assume the opposite, that is, the number
√
2 +
√
3 is rational. Then

there exist a and b such that
√
2 +
√
3 = a

b
for some a ∈ Z and b ∈ N

and the greatest common divisor of a and b is 1. Squaring both sides
of the equation

√
2 +
√
3 = a

b
we get

2 + 2
√
6 + 3 =

a2

b2
.

That is,
√
6 =

a2 − 5b2

2b2
.

On the right-hand side there is a rational number, so to get a contra-
diction we have to prove that

√
6 is irrational. We prove it indirectly.

Assume that
√
6 is rational. Then there exist c and d such that

√
6 = c

d

for some c ∈ Z and d ∈ N and the greatest common divisor of c and d

is 1. We obtain that
6d2 = c2,

that is, c is even. Therefore c = 2c1 for some c1. It follows that

6d2 = 4c21 ⇒ 3d2 = 2c21.
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We have that 2 divides 3d2. Since 2 does not divide 3 it must divide d2.
It means that d2 is even, so d is even, a contradiction. We have proved
that

√
6 is irrational and thus we have that

√
2 +
√
3 is irrational.

3.17 Suppose the opposite of the statement, that is, there exists x = p
q
with

p ∈ Z, q ∈ N and gcd(p, q) = 1 such that

a

(
p

q

)2

+ b
p

q
+ c = 0.

Multiply the equation by q2 to obtain (we note that q 6= 0)

ap2 + bpq + cq2 = 0.

Assume that p is even and q is odd. In this case ap2 is even, bpq is even
and cq2 is odd. Hence ap2 + bpq + cq2 is odd, a contradiction. Now
assume that p is odd and q is even. Here we obtain that ap2 is odd, bpq
is even and cq2 is even. Again we get a contradiction. Finally, assume
that p is odd and q is odd. We get that ap2 is odd, bpq is odd and
cq2 is odd, so ap2 + bpq + cq2 is odd, a contradiction. We remark that
the case p is even, q is even is not possible since gcd(p, q) = 1. The
statement follows.

3.18 Assume that the statement is false, that is,

a1 <
a1 + a2 + . . .+ an

n
,

a2 <
a1 + a2 + . . .+ an

n
,

...

an <
a1 + a2 + . . .+ an

n
.

Take the sum of the above inequalities to get

a1 + a2 + . . .+ an < n ·
(
a1 + a2 + . . .+ an

n

)
= a1 + a2 + . . .+ an.

That is, we obtained a contradiction and the statement is proved.
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3.19 We provide an indirect proof. Assume that there exists a positive
integer n for which

gcd(Fn, Fn+1) = d > 1.

That is, d divides Fn and d divides Fn+1. Then d divides the difference
of these two Fibonacci numbers. The difference is equal to

Fn+1 − Fn = Fn−1.

Since d divides the left-hand side we obtain that d divides the right-
hand side, that is, d | Fn−1. We apply the previous argument again

d | Fn and d | Fn−1 hence d | (Fn − Fn−1).

In this way we get that d | Fn−2. Now we have that d | Fn−1 and
d | Fn−2, so d | (Fn−1 − Fn−2). Since Fn−1 − Fn−2 = Fn−3 we obtain
that d divides Fn−3. We continue this process to reach a contradiction,
namely that d | F2 = 1 and d | F1 = 1. Hence for consecutive Fibonacci
numbers Fn and Fn+1 we have

gcd(Fn, Fn+1) = 1.

3.20 First we solve the equation 5x1+7x2 = 1 in integers x1, x2 by applying
the Euclidean algorithm. We get that

5 · 3 + 7 · (−2) = 1,

therefore
(3n,−2n)

is a solution to the equation 5x1+7x2 = n. By Theorem 3.5 we obtain
a parametric formula

(3n− 7t,−2n+ 5t) t ∈ Z

for the integer solutions (x1, x2) of the equation 5x1+7x2 = n. To have
non-negative solutions we need

3n− 7t ≥ 0⇒ t ≤ 3n

7

−2n+ 5t ≥ 0⇒ t ≥ 2n

5
.
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So we have the following inequalities

2n

5
≤ t ≤ 3n

7
.

If there is a t ∈ Z in the interval [2n
5
, 3n

7
], then n can be represented in

the form 5x1 + 7x2. Denote by In the set
{
t | 2n

5
≤ t ≤ 3n

7
, t ∈ Z

}
.

n In n In n In n In

1 ∅ 8 ∅ 15 { 6 } 22 { 9 }
2 ∅ 9 ∅ 16 ∅ 23 ∅
3 ∅ 10 { 4 } 17 { 7 } 24 { 10 }
4 ∅ 11 ∅ 18 ∅ 25 { 10 }
5 { 2 } 12 { 5 } 19 { 8 } 26 { 11 }
6 ∅ 13 ∅ 20 { 8 } 27 { 11 }
7 { 3 } 14 { 6 } 21 { 9 } 28 { 12 }

Hence n = 23 cannot be represented. However for all n ∈ { 24, 25, 26, 27, 28 }
we have solutions. From these solutions we can easily obtain solutions
for all n ≥ 24.

3.21 An integer solution to the equation 4x1 + 5x2 = 1 is

(x1, x2) = (−1, 1).

Hence we have a particular solution

(x1, x2) = (−n, n)

in case of the equation 4x1 +5x2 = n. It is now clear that all solutions
can be obtained from the parametrization

(−n− 5t, n+ 4t) t ∈ Z.

To have non-negative solutions one needs

−n− 5t ≥ 0⇒ t ≤ −n
5

n+ 4t ≥ 0⇒ t ≥ −n
4

.
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Thus we have
−n

4
≤ t ≤ −n

5
.

Denote by In the set
{
t | −n

4
≤ t ≤ −n

5
, t ∈ Z

}
. We determine In for

1 ≤ n ≤ 15.

n In n In n In

1 ∅ 6 ∅ 11 ∅
2 ∅ 7 ∅ 12 {−3 }
3 ∅ 8 {−2 } 13 {−3 }
4 {−1 } 9 {−2 } 14 {−3 }
5 {−1 } 10 {−2 } 15 {−3 }

So we get that n = 11 cannot be represented in the appropriate form.
The solutions for n ∈ { 12, 13, 14, 15 } can be used to determine solu-
tions for n ≥ 12. In case of 13 we have

13 = 4 · 2 + 5 · 1.

It implies that

4(k + 3) + 1 = 4(k + 2) + 5 · 1 k ∈ N ∪ { 0 } .

Thus, if n = 4K + 1, then (x1, x2) = (K − 1, 1), K ≥ 1.

3.22 We can rewrite the equation as

2(2x1 + 3x2) + 9x3 = n

and another possibility is as follows

4x1 + 3(2x2 + 3x3) = n.

We will use the second form because the largest coefficient is 4 while
in case of the first form the largest coefficient is 9. So we have

4x1 + 3y1 = n.
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A particular solution is (n,−n), therefore we get

x1 = n+ 3t,

y1 = −n− 4t

for some t ∈ Z. We have that y1 = 2x2+3x3 = −n− 4t. This equation
has a particular solution (n− 2t,−n), therefore we obtain that

x2 = n− 2t+ 3s,

x3 = −n− 2s

for some s, t ∈ Z. That is, the parametrization of the integral solution
of the equation is given by

x1 = n+ 3t,

x2 = n− 2t+ 3s,

x3 = −n− 2s

for some s, t ∈ Z.

3.23 In the previous exercise we determined the parametrization of the in-
teger solutions of the equation. It is as follows

x1 = n+ 3t,

x2 = n− 2t+ 3s,

x3 = −n− 2s

for some s, t ∈ Z. We would like to have only non-negative integer
solutions hence we get the system of inequalities

0 ≤ n+ 3t,

0 ≤ n− 2t+ 3s,

0 ≤ −n− 2s.

We easily obtain upper bound for s and lower bound for t as follows

−n

3
≤ t,

−n

2
≥ s.
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Our system of inequalities implies that

−2n ≤6t ≤ 3n+ 9s,

−2n+ 4t ≤6s ≤ −3n.

That is,

−5n ≤ 9s,

4t ≤ −n.

Now we have lower bound for s and upper bound for t. Define the
intervals Is, It as follows Is = [−5n

9
,−n

2
] and It = [−n

3
,−n

4
]. The length

of Is is at least 1 if n ≥ 18 and the length of It is at least 1 if n ≥ 12.
Therefore the equation has a non-negative integer solution if n ≥ 18.
It remains to handle the cases 1 ≤ n ≤ 17.

n integer(s) in Is integer(s) in It solution(s): (x1, x2, x3)

1 - - -
2 -1 - -
3 - -1 -
4 -2 -1 (1, 0, 0)

5 - - -
6 -3 -2 (0, 1, 0)

7 - -2 -
8 -4 -2 (2, 0, 0)

9 -5 -3 (0, 0, 1)

10 -5 -3 (1, 1, 0)

11 -6 -3 -
12 -6 -4,-3 (0, 2, 0), (3, 0, 0)

13 -7 -4 (1, 0, 1)

14 -7 -4 (2, 1, 0)

15 -8 -5,-4 (0, 1, 1)

16 -8 -5,-4 (1, 2, 0), (4, 0, 0)

17 -9 -5 (2, 0, 1)
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Thus the largest positive integer n for which the equation

4x1 + 6x2 + 9x3 = n

has no non-negative integer solution is 11.

3.24 The pigeonholes are the possible birthdays, there are 366 pigeonholes.
There are 367 people (playing the role of pigeons). Therefore there is
at least one pigeonhole containing at least two people.

3.25 The pigeonholes are the possible birthdays, so there are 366 pigeon-
holes. There are 1500 people and 1500

366
≈ 4.098, hence there is at least

one pigeonhole containing at least 4 people. That means that at least
4 people were born on the same day of the year.

3.26 We define the pigeonholes as disjoint subsets of the set

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } ,

that is,

{ 1, 12 } , { 2, 11 } , { 3, 10 } , { 4, 9 } , { 5, 8 } , { 6, 7 } .

The pigeons are the selected integers. We have six pigeonholes and
seven pigeons, therefore there exists a subset containing two selected
integers. The subsets are constructed in such a way that the sum of
the elements are 13, so the sum of the two integers belonging to the
same subset is 13.

3.27 The pigeons are the 11 chosen integers. We define the pigeonholes as
follows:

{ 1, 2 } , { 3, 4 } , { 5, 6 } , { 7, 8 } , { 9, 10 } ,

{ 11, 12 } , { 13, 14 } , { 15, 16 } , { 17, 18 } , { 19, 20 } .

There are 10 pigeonholes and 11 pigeons, so there exists a pigeonhole
containing 2 pigeons. Thus the statement is true.
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3.28 We divide the unit square into four smaller squares:

q
q qq
q

The subsquares are the pigeonholes and the points are the pigeons.
Hence by the pigeonhole principle there are at least two points in the
same subsquare. The largest distance in a subsquare is the length of
the diagonal which is

√
2/2. The statement is proved.

3.29 We can write the elements of A in the form 2a · b, where a ≥ 0 and b

is an odd integer between 1 and 99. There are 50 odd integers in the
interval [1, 2, . . . , 100] therefore the pigeonhole principle implies that
among the 51 integers there are at least two with the same b. That is,
we have two integers 2a1 · b and 2a2 · b. If a1 < a2, then 2a1 · b divides
2a2 · b. The statement is proved.

3.30 We apply Theorem 3.8. Here the pigeonholes are the grades, so n = 5.
There are m1 students who get grade 1, m2 students who get grade 2
etc. According to the theorem one needs m1+m2+m3+m4+m5−5+1

students to ensure that for some i mi students get the same grade.
Hence we take m1 = m2 = m3 = m4 = m5 = 4. Therefore there must
be at least 16 students in the class.

3.31 We note that it is possible to place 14 bishops such that they cannot
hit each other, a solution is given by
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~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

It remains to show that it is not possible to place more than 14 bishops
in such a way that they can not hit each other. A natural idea is to
divide the 64 chess squares into 14 groups such that if two bishops are
in the same group then they can hit each other. We can produce 14
such groups

4 8 5 9 6 10 7 11
8 4 9 5 10 6 11 7
3 9 4 10 5 11 6 12
9 3 10 4 11 5 12 6
2 10 3 11 4 12 5 13
10 2 11 3 12 4 13 5
1 11 2 12 3 13 4 14
11 1 12 2 13 3 14 4

3.32 (a) The first card is 7♣, hence the suit of the hidden card is ♣. The
distance can be obtained from the following table

distance order of the 3 cards
1 3♦, J♦, A♠
2 3♦, A♠, J♦
3 J♦, 3♦, A♠
4 J♦, A♠, 3♦
5 A♠, 3♦, J♦
6 A♠, J♦, 3♦



182 SOLUTIONS

That is, we have

d(7♣, hidden card) = 1.

Thus the hidden card is 8♣.

(b) The suit of the secret card is ♦ since the first card in the sequence
is J♦. It remains to decode the distance of the secret card and J♦ :

distance order of the 3 cards
1 9♣, 8♥, Q♥
2 9♣, Q♥, 8♥
3 8♥, 9♣, Q♥
4 8♥, Q♥, 9♣
5 Q♥, 9♣, 8♥
6 Q♥, 8♥, 9♣

We get that the distance is 2, so the secret card is K♦.

(c) It is clear that the suit of the hidden card is ♥. We can determine
the distance using the following table

distance order of the 3 cards
1 6♦, J♦, 10♥
2 6♦, 10♥, J♦
3 J♦, 6♦, 10♥
4 J♦, 10♥, 6♦
5 10♥, 6♦, J♦
6 10♥, J♦, 6♦

In this case the distance is 6, therefore the hidden card is 2♥.

(d) The first card is 10♦, so the suit of the hidden card is ♦. It remains
to figure out the distance.
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distance order of the 3 cards
1 5♦, 2♠, 4♠
2 5♦, 4♠, 2♠
3 2♠, 5♦, 4♠
4 2♠, 4♠, 5♦
5 4♠, 5♦, 2♠
6 4♠, 2♠, 5♦

The order of the remaining three cards is 4♠, 2♠, 5♦, hence the distance
is 6. Thus the announced hidden card is 3♦.

(e) It is easy to see that the suit of the hidden card is ♠. We can
determine the distance using the following table

distance order of the 3 cards
1 7♦, 3♥, 7♥
2 7♦, 7♥, 3♥
3 3♥, 7♦, 7♥
4 3♥, 7♥, 7♦
5 7♥, 7♦, 3♥
6 7♥, 3♥, 7♦

That is, the distance of the two cards is 2. Therefore the hidden card
is 10♠.

3.33 (a) We need two cards having the same suit. In this example there are
two possibilities

3♣, 7♣ ⇒ the hidden card is 7♣, the distance is 4,

2♦, 5♦ ⇒ the hidden card is 5♦, the distance is 3.

If the hidden card is 7♣, then we have to encode 4 using the cards

2♦ < 5♦ < A♠.
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We have that 4 corresponds to the ordering 2,3,1, therefore the order
of the remaining four cards is

3♣, 5♦, A♠, 2♦.

If the secret card is 5♦, then the distance to encode is 3, which is 2,1,3.
The correct order of the four cards is

2♦, 7♣, 3♣, A♠.

(b) The assistant chooses A♦ as the card to announce. We have that
d(J♦, A♦) = 3. One encodes distance 3 as 2,1,3. Thus the order of
the four cards is

J♦, 8♥, 10♣, 4♠.

(c) The hidden card is 8♠, the distance is 1, therefore the assistant
hands the four cards in the following order to the magician

7♠, A♣, 6♦, K♥.

(d) Here the assistant may use the following pairs of cards

(I). 3♠, 7♠ ⇒ hidden card: 7♠, distance: 4,

(II). 3♠, 9♠ ⇒ hidden card: 9♠, distance: 6,

(III). 7♠, 9♠ ⇒ hidden card: 9♠, distance: 2.

The corresponding sequences are

(I). 3♠, 8♦, 9♠, 7♣,

(II). 3♠, 7♠, 8♦, 7♣,

(III). 7♠, 7♣, 3♠, 8♦.

(e) In this case the assistant has two choices

(I). J♦, Q♦ ⇒ hidden card: Q♦, distance: 1,

(II). 7♥, 10♥ ⇒ hidden card: 10♥, distance: 3.
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The corresponding sequences of cards are

(I). J♦, 7♥, 10♥, 3♠,

(II). 7♥, Q♦, J♦, 3♠.
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6.4 Pascal’s triangle

4.1 We prove that the two triangles are the same by induction. That is, we
prove that the kth element of the nth row is the same in both triangles,
and we prove this by induction on n. For n = 0 the two triangles have
the same zero row:

(
0
0

)
= 1. Assume that the two triangles are equal

in the (n− 1)st row. We prove that the two triangles contain the same
numbers in the nth row, as well. The first and the last numbers are
the same:

(
n
0

)
= 1,

(
n
n

)
= 1. Now, consider the kth element of the nth

row for an arbitrary 1 ≤ k ≤ n − 1. In Pascal’s triangle it is the sum
of the two numbers above it, that is, it is the sum of the (k − 1)st and
the kth number of row (n−1). By the induction hypotheses, row n−1

is the same in Pascal’s triangle and in the triangle of the Binomial
coefficients. That is, the (k − 1)st element of row (n − 1) is

(
n−1
k−1

)
,

the kth element of row (n − 1) is
(
n−1
k

)
. By Proposition 4.1 we have(

n−1
k−1

)
+
(
n−1
k

)
=
(
n
k

)
. That is, the kth number of the nth row in Pascal’s

triangle is the same as the kth number of the nth row in the triangle
of the Binomial coefficients. This is true for arbitrary 1 ≤ k ≤ n − 1,
thus the nth row of Pascal’s triangle is the same as the nth row of the
triangle of the binomial coefficients. This finishes the induction proof,
the two triangles are the same.

4.2 The first twelve rows of Pascal’s triangle can be seen in Table 6.5 on
page 203.

4.3 The Binomial theorem holds for n = 0 and n = 1, as well: (x + y)0 =

1 =
(
0
0

)
x0y0, (x+ y)1 = x+ y =

(
1
0

)
x1y0 +

(
1
1

)
x0y1. Now, we can prove

the theorem by induction on n. Assume that the statement holds for
n− 1, that is,

(x+ y)n−1 = xn−1 +

(
n− 1

1

)
xn−2y + · · ·+

(
n− 1

1

)
xyn−2 + yn−1.

This is the induction hypothesis. Now, compute (x + y)n using the
same method as before, and use the induction hypothesis for expanding
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(x+ y)n−1:

(x+ y)n = (x+ y)n−1 · (x+ y)

=

(
xn−1 +

(
n− 1

1

)
xn−2y + · · ·+

(
n− 1

n− 2

)
xyn−2 + yn−1

)
· (x+ y)

=

(
xn−1 +

(
n− 1

1

)
xn−2y + · · ·+

(
n− 1

n− 2

)
xyn−2 + yn−1

)
· x

+

(
xn−1 +

(
n− 1

1

)
xn−2y + · · ·+

(
n− 1

n− 2

)
xyn−2 + yn−1

)
· y

= xn +

(
n− 1

1

)
xn−1y + · · ·+

(
n− 1

n− 2

)
x2yn−2 + xyn−1

+ xn−1y +

(
n− 1

1

)
xn−2y2 + · · ·+

(
n− 1

n− 2

)
xyn−1 + yn

= xn +

(
n− 1

1

)
xn−1y + · · ·+

(
n− 1

n− 2

)
x2yn−2 +

(
n− 1

n− 1

)
xyn−1

+

(
n− 1

0

)
xn−1y +

(
n− 1

1

)
xn−2y2 + · · ·+

(
n− 1

n− 2

)
xyn−1 + yn

= xn +

((
n− 1

1

)
+

(
n− 1

0

))
xn−1y + . . .

· · ·+
((

n− 1

k

)
+

(
n− 1

k − 1

))
xn−kyk + . . .

· · ·+
((

n− 1

n− 1

)
+

(
n− 1

n− 2

))
xyn−1 + yn

= xn +

(
n

1

)
xn−1y + · · ·+

(
n

k

)
xn−kyk + · · ·+

(
n

n− 1

)
xyn−1 + yn.

(6.1)

Here, we have expanded (x + y)n−1 using the induction hypothesis,
and multiplied it by (x + y) by expanding the brackets. Then we
collected together the same terms xn−kyk for every k = 0, 1, . . . , n −
1, n. Finally, in (6.1) we used the generating rule of Pascal’s triangle
(Proposition 4.1).

4.4 Consider (x+ y)n:

(x+y)n = anx
n+an−1x

n−1y+an−2x
n−2y2+· · ·+a2x

2yn−2+a1xy
n−1+a0y

n,
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for some numbers an, an−1, . . . , a1, a0. How do we obtain the coefficient
ak for xn−kyk? Now, (x+ y)n is the n-fold product of (x+ y) by itself:

(x+ y)n = (x+ y)(x+ y) . . . (x+ y)(x+ y)︸ ︷︷ ︸
n times

.

The multiplication of these n factors is carried out by choosing a term
from each factor (x or y) in every possible way, multiplying these n

terms, and then adding the resulting products together. Thus the co-
efficient of xn−kyk is the number of possibilities to choose (n−k)-times
the x and k-times the y out of the n factors. Altogether there are n

many y’s to choose from, and we need to choose k of them (and the
remaining (n − k) factors will be chosen as x). This can be done in(
n
k

)
-many ways. Therefore the coefficient of xn−kyk is ak =

(
n
k

)
.

4.5

2n = (1 + 1)n = 1n + n · 1n−1 · 1 +
(
n

2

)
· 1n−2 · 12 + · · ·+ n · 1 · 1n−1 + 1n

= 1 + n+

(
n

2

)
+ · · ·+

(
n

k

)
+ · · ·+

(
n

n− 2

)
+ n+ 1 =

n∑
k=0

(
n

k

)
.

4.6

0 = 0n = (1− 1)n

= 1n + n · 1n−1 · (−1) +
(
n

2

)
· 1n−2 · (−1)2 + · · ·+ n · 1 · (−1)n−1 + (−1)n

= 1− n+

(
n

2

)
− · · ·+ (−1)k

(
n

k

)
+ · · ·+ (−1)n−1n+ (−1)n

=
n∑

k=0

(−1)k
(
n

k

)
.
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4.7 Using the Binomial theorem we obtain

(x+ y)8 =
8∑

k=0

(
8

k

)
x8−kyk = x8 + 8x7y + 28x6y2 + 56x5y3

+ 70x4y4 + 56x3y5 + 28x2y6 + 8xy7 + y8,

(x− y)8 =
8∑

k=0

(
8

k

)
x8−k (−y)k = x8 − 8x7y + 28x6y2 − 56x5y3

+ 70x4y4 − 56x3y5 + 28x2y6 − 8xy7 + y8,

(a+ 1)10 =
10∑
k=0

(
10

k

)
· a10−k · 1k = a10 + 10a9 + 45a8 + 120a7

+ 210a6 + 252a5 + 210a4 + 120a3 + 45a2 + 10a+ 1,

(b− 3)5 =
5∑

k=0

(
5

k

)
b5−k (−3)k = b5 − 15b4 + 90b3

− 270b2 + 405b− 243,

(1 + 2/x)5 =
5∑

k=0

(
5

k

)
· 15−k ·

(
2

x

)k

= 1 +
10

x
+

40

x2
+

80

x3
+

80

x4
+

32

x5
,

(a+ b)6 =
6∑

k=0

(
6

k

)
a6−kbk = a6 + 6a5b+ 15a4b2 + 20a3b3

+ 15a2b4 + 6ab5 + b6,

(1 + x)5 =
5∑

k=0

(
5

k

)
· 15−k · xk = 1 + 5x+ 10x2

+ 10x3 + 5x4 + x5,

(3a+ 4b)4 =
4∑

k=0

(
4

k

)
· (3a)4−k · (4b)k = (3a)4 + 4 · (3a)3 · (4b)

+ 6 · (3a)2 · (4b)2 + 4 · (3a) · (4b)3 + (4b)4 = 81a4

+ 432a3b+ 864a2b2 + 768ab3 + 256b4,

(3− 2x)4 =
4∑

k=0

(
4

k

)
· 34−k · (−2x)k = 34 − 4 · 33 · (2x) + 6 · 32 · (2x)2

− 4 · 3 · (2x)3 + (2x)4 = 81− 216x+ 216x2 − 96x3 + 16x4.
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4.8 By the Binomial theorem(
1− x

2

)9
=

9∑
k=0

(
9

k

)
· 19−k ·

(
−x

2

)k
=

9∑
k=0

(−1)k ·
(
9
k

)
2k
· xk.

Here, the fourth term corresponds to x3, that is, (−1)3 ·
(
9
3

)
/23x3 =

−84/8x3 = −21/2x3 = −10.5x3. The coefficient of x5 is (−1)5·
(
9
5

)
/25 =

−126/32 = −63/16 = −3.9375.

4.9 If n is odd, then every binomial coefficient occurs twice in the sum:
once with positive sign, and once with negative sign. Indeed, the sign
of
(
n
k

)
is (−1)k and the sign of

(
n

n−k

)
is (−1)n−k. They cannot have the

same sign, because their product is (−1)k · (−1)n−k = (−1)n = −1, as
n is odd. Thus every binomial coefficient occurs twice with different
signs, their sum is 0, and the whole sum is 0, as well.

4.10 Consider the alternating sum of the nth row (for n ≥ 1), and use the
generating rule of Pascal’s triangle:(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n−1 ·

(
n

n− 1

)
+ (−1)n ·

(
n

n

)
=

(
n− 1

0

)
−
((

n− 1

0

)
+

(
n− 1

1

))
+

((
n− 1

1

)
+

(
n− 1

2

))
− . . .

+ (−1)n−1 ·
((

n− 1

n− 2

)
+

(
n− 1

n− 1

))
+ (−1)n ·

(
n− 1

n− 1

)
=

((
n− 1

0

)
−
(
n− 1

0

))
+

(
−
(
n− 1

1

)
+

(
n− 1

1

))
+

((
n− 1

2

)
−
(
n− 1

2

))
+ . . .

+

(
(−1)n−2 ·

(
n− 1

n− 2

)
+ (−1)n−1 ·

(
n− 1

n− 2

))
+

(
(−1)n−1 ·

(
n− 1

n− 1

)
+ (−1)n ·

(
n− 1

n− 1

))
= 0 + 0 + 0 + · · ·+ 0 + 0 = 0.

First, we replaced
(
n
0

)
= 1 by

(
n−1
0

)
= 1, and

(
n
n

)
= 1 by

(
n−1
n−1

)
= 1,

then we used the generating rule of Pascal’s triangle. Then we observed
that every

(
n−1
k

)
occurs twice in the sum: first with a positive sign, then

right after it with a negative sign (for 0 ≤ k ≤ n− 1).
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4.11 Again, we give a combinatorial meaning to both sides of (4.6). The
right hand side gives a clue:

(
n+m

l

)
is the number of ways to choose l

elements out of an (n+m)-element set, say

S = { 1, 2, . . . , n, n+ 1, n+ 2, . . . , n+m } .

Our plan is to prove that the left hand side of (4.6) is the number
of l-element subsets of S, as well. Let S1 = { 1, 2, . . . , n } and S2 =

{n+ 1, n+ 2, . . . , n+m }. Now, try to count the number of ways to
choose l elements of S by counting how many elements we choose from
S1 and from S2. If we choose 0 element from S1, then we must choose l
elements from S2. We can do this in

(
n
0

)
·
(
m
l

)
-many ways. If we choose

1 element from S1, then we must choose l − 1 elements from S2. We
can do this in

(
n
1

)
·
(

m
l−1

)
-many ways. If we choose 2 elements from

S1, then we must choose l − 2 elements from S2. We can do this in(
n
2

)
·
(

m
l−2

)
-many ways. In general, if we choose k elements from S1, then

we must choose l − k elements from S2. We can do this in
(
n
k

)
·
(

m
l−k

)
-

many ways. In the end, if we choose l elements from S1, then we must
choose 0 element from S2. We can do this in

(
n
l

)
·
(
m
0

)
-many ways.

Thus, choosing l elements out of n + m can be done in the following
number of ways:(
n

0

)
·
(
m

l

)
+

(
n

1

)
·
(

m

l − 1

)
+ · · ·+

(
n

l

)
·
(
m

0

)
=

l∑
k=0

(
n

k

)
·
(

m

l − k

)
.

That is, both sides of (4.6) counts the number of ways of choosing l

elements out of an (n+m)-element set, and therefore must be equal.

If we choose n = m = l, and use the symmetry of Pascal’s triangle(
n
k

)
=
(

n
n−k

)
, then we obtain exactly equation (4.5).

4.12 Consider (x+ y)n+m, and expand it using the Binomial theorem:

(x+ y)n+m =
n+m∑
k=0

(
n+m

k

)
xn+m−k · yk.

Then the right hand side of (4.6) is the coefficient of the term xn+m−lyl.
We prove that the left hand side is the coefficient of xn+m−lyl, as well.
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For this, we compute (x+y)n+m by multiplying (x+y)n · (x+y)m after
expanding both factors using the Binomial theorem:

(x+y)n+m = (x+y)n·(x+y)m =

(
n∑

k=0

(
n

k

)
xn−kyk

)
·

(
m∑
k=0

(
m

k

)
xm−kyk

)
.

Now, let us compute the coefficient of xn+m−lyl. When do we obtain
xn+m−lyl when we multiply

(∑n
k=0

(
n
k

)
xn−kyk

)
by
(∑m

k=0

(
m
k

)
xm−kyk

)
?

For some 0 ≤ k ≤ l the term xn−kyk in the first factor must be multi-
plied by xm−l+kyl−k from the second factor. The coefficient of xn−kyk in
the first factor is

(
n
k

)
, the coefficient of xm−l+kyl−k in the second factor

is
(

m
l−k

)
, thus this multiplication contributes by

(
n
k

)
·
(

m
l−k

)
to the coeffi-

cient of xn+m−lyl in (x+ y)n+m. That is, the coefficient of xn+m−lyl in
(x+ y)n+m is

l∑
k=0

(
n

k

)
·
(

m

l − k

)
.

Moreover, the coefficient of xn+m−lyl in (x + y)n+m is
(
n+m

l

)
, thus the

two numbers must be equal, which proves (4.6):

n∑
k=0

(
n

k

)
·
(

m

l − k

)
=

(
n+m

l

)
.

4.13 We can try to prove the identity by induction on m. For m = 0 the
identity holds, as the left hand side is

(
n
0

)
= 1, the right hand side is(

n+1
0

)
= 1, as well. Assume that the identity holds for m− 1, that is,

m−1∑
k=0

(
n+ k

k

)
=

(
n

0

)
+

(
n+ 1

1

)
+ · · ·+

(
n+m− 1

m− 1

)
=

(
n+m

m− 1

)
.

This is the induction hypothesis. Now we prove the identity for m.

m∑
k=0

(
n+ k

k

)
=

(
n

0

)
+

(
n+ 1

1

)
+ · · ·+

(
n+m− 1

m− 1

)
︸ ︷︷ ︸

=(n+m
m−1), by the induction hypothesis

+

(
n+m

m

)

=

(
n+m

m− 1

)
+

(
n+m

m

)
=

(
n+m+ 1

m

)
.
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Here, we first used the induction hypothesis, then the generating rule
of Pascal’s triangle (Proposition 4.1).

We can spare ourselves an induction proof if we use
(
n+k
k

)
=
(
n+k
n

)
.

That is,
m∑
k=0

(
n+ k

k

)
=

(
n

0

)
+

(
n+ 1

1

)
+ · · ·+

(
n+m

m

)

=

(
n

n

)
+

(
n+ 1

n

)
+ · · ·+

(
n+m− 1

n

)
=

n+m∑
k=n

(
k

n

)
=

(
n+m+ 1

n+ 1

)
=

(
n+m+ 1

m

)
by Proposition 4.5.

4.14 The kth element of row p is(
p

k

)
=

p!

k! · (p− k)!
.

This number is an integer number, the nominator is divisible by the
prime p. However, for 1 ≤ k ≤ p − 1, the denominator only contains
positive integers strictly less than p. Thus, when we simplify this frac-
tion for obtaining the resulting integer, the factor p in the nominator
will not cancel out with anything in the denominator, and thus p will
divide the integer

(
p
k

)
.

If p is not a prime, then this property does not necessarily hold. For
example if n is even then by Exercise 2.37 we have n -

(
n
2

)
. Furthermore,

in the first 12 rows we have

6 -
(
6

3

)
= 20,

8 -
(
8

4

)
= 70,

9 -
(
9

3

)
= 84,

10 -
(
10

5

)
= 252,

12 -
(
12

3

)
= 220, 12 -

(
12

4

)
= 495.
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6.5 Recurrence sequences

5.1 We use the notation as follows 1: the largest disk, 2: the second largest
disk, 3: the second smallest disk, 4: the smallest disk. At the beginning
there are 4 disks on peg A, it is denoted as { 1, 2, 3, 4 }, while peg B

and peg C has no disks at all, so we write { }.

# move peg A peg B peg C

0 { 1, 2, 3, 4 } { } { }
1 { 1, 2, 3 } { 4 } { }
2 { 1, 2 } { 4 } { 3 }
3 { 1, 2 } { } { 3, 4 }
4 { 1 } { 2 } { 3, 4 }
5 { 1, 4 } { 2 } { 3 }
6 { 1, 4 } { 2, 3 } { }
7 { 1 } { 2, 3, 4 } { }
8 { } { 2, 3, 4 } { 1 }
9 { } { 2, 3 } { 1, 4 }
10 { 3 } { 2 } { 1, 4 }
11 { 3, 4 } { 2 } { 1 }
12 { 3, 4 } { } { 1, 2 }
13 { 3 } { 4 } { 1, 2 }
14 { } { 4 } { 1, 2, 3 }
15 { } { } { 1, 2, 3, 4 }

5.2 The idea is to determine geometric progressions satisfying the same
recurrence relation as an. Let gn be a geometric progression with the
above mentioned property such that gn = g0r

n for some g0 and r. It
follows that

r2 = 7r − 10⇒ r2 − 7r + 10 = 0.

Solving the quadratic equation yields that r = 2 or 5. We obtained
two appropriate progressions and we know that linear combinations of
these progressions satisfy exactly the same recurrence. Define Wn as
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follows
Wn = s · 2n + t · 5n.

We try to fix s and t such that W0 = a0 and W1 = a1. We get that

W0 = a0 = 0,

W1 = a1 = 2.

Therefore

s+ t = 0,

2s+ 5t = 2.

The solution of the above system of equations is s = −2/3, t = 2/3.
Hence

an = Wn = −2

3
· 2n + 2

3
· 5n.

5.3 Let gn be a geometric progression satisfying the same recurrence rela-
tion as an such that gn = g0r

n for some g0 and r. We have that

r2 = 4r − 3⇒ r2 − 4r + 3 = 0.

That is, r ∈ { 1, 3 }. The linear combination we consider now is

Wn = s · 1n + t · 3n = s+ t · 3n.

The additional conditions imply that

W0 = a0 = 1,

W1 = a1 = 13.

Therefore

s+ t = 1,

s+ 3t = 13.

We get the solution s = −5, t = 6. The explicit formula for an is

−5 + 6 · 3n.
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5.4 This is an example of an order 3 linear recurrence. We define gn = g0r
n

for some g0 and r, which is a geometric progression. We assume that
it satisfies the same recurrence relation as an, that is, we obtain

r3 = −2r2 + r + 2.

It is a cubic polynomial. We look for integer solutions. If there is an
integral root, then it divides 2. Hence the possible integral roots are
±2,±1.

r r3 + 2r2 − r − 2

-2 0
-1 0
1 0
2 12

The cubic polynomial r3 + 2r2 − r − 2 can be written as (x− 1) ·
(x+ 1) · (x+ 2), that is, there are three integral roots. In this case we
have three geometric progressions satisfying the recurrence, therefore
the appropriate linear combination is

Wn = s · (−2)n + t · (−1)n + u · 1n.

The corresponding system of linear equations is

s+ t+ u = 0,

−2s− t+ u = 1,

4s+ t+ u = 2.

We subtract the first equation from the third one to get 3s = 2. So we
have that s = 2/3. We eliminate s from the first two equations

t+ u = −2

3
,

−t+ u =
7

3
.

It is easy to see that u = 5/6 and t = −3/2. The explicit formula for
an is

2

3
· (−2)n − 3

2
· (−1)n + 5

6
.
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5.5 The solution is similar to the previous one, so we only provide some
details of the computation. The cubic polynomial in this case is

r3 − 6r2 + 11r − 6.

r r3 − 6r2 + 11r − 6

−6 −504
−3 −120
−2 −60
−1 −24
1 0

2 0

3 0

6 60

The three roots of the equation are 1, 2 and 3. Let Wn = s · 1n + t ·
2n + u · 3n. The initial values should be equal as well, hence

s+ t+ u = 0,

s+ 2t+ 3u = 0,

s+ 4t+ 9u = 1.

It is easy to eliminate s from the second and the third equation

t+ 2u = 0,

3t+ 8u = 1.

Therefore u = 1/2, t = −1 and s = 1/2. We obtain the following
explicit formula

an =
1

2
− 2n +

1

2
· 3n.

5.6 In this exercise we have an order 2 recurrence sequence. Following the
method we described we get a quadratic polynomial

r2 − 4r + 4 = (r − 2)2.
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It has only a multiple root, so we have to consider the linear combina-
tions of 2n and n · 2n. That is,

Wn = s · 2n + tn · 2n.

The initial values of an are a0 = −1 and a1 = 0, hence the system of
linear equations is

s = −1,

2s+ 2t = 0.

It is clear that s = −1 and t = 1. Thus the closed-form formula for an
is

−2n + n · 2n.

5.7 As before we reduce the problem to a polynomial equation, which is

r3 − 5r2 + 3r + 9.

There are 6 possible integral roots, the divisors of 9, that is, {±9,±3,±1 }.

r r3 − 5r2 + 3r + 9

−9 −1152
−3 −72
−1 0

1 8

3 0

9 360

We obtained only 2 roots of the cubic polynomial. Dividing the poly-
nomial r3−5r2+3r+9 by (r+1) ·(r−3) we get r−3 and the remainder
is 0. That means that

r3 − 5r2 + 3r + 9 = (r + 1) · (r − 3)2.

There is a double root, so Wn is defined as

s · (−1)n + t · 3n + un · 3n.
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Substituting n = 0, 1, 2 yields

s+ t = 3,

−s+ 3t+ 3u = 4,

s+ 9t+ 18u = 29.

Using that s = 3− t we obtain

4t+ 3u = 7,

8t+ 18u = 26.

So we have the solution s = 2, t = 1 and u = 1. The explicit formula
for an is given by

2 · (−1)n + 3n + n · 3n.

5.8 Consider the sequence

un =

(
5− 3

√
5

2

)n

+

(
5 + 3

√
5

2

)n

, n ≥ 0.

We have u0 = 2 and u1 = 5. We try to find a second order linear
recurrence satisfied by un. If there is such a recurrence, then the cor-
responding quadratic polynomial is(

r − 5− 3
√
5

2

)
·

(
r − 5 + 3

√
5

2

)
= r2 − 5r − 5.

Therefore the possible recurrence relation is

un = 5un−1 + 5un−2 = 5 · (un−1 + un−2).

Now we have that un is an integer for all n and un is a multiple of 5 if
n ≥ 1.

5.9 We have a sequence

un = (4−
√
3)n + (4 +

√
3)n, n ≥ 0.
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One computes that u0 = 2 and u1 = 8, that is, the first two elements
of the sequence is divisible by 2. The quadratic polynomial(

r − 4 +
√
2
)
·
(
r − 4−

√
2
)
= r2 − 8r + 14

is the polynomial corresponding to the appropriate recurrence relation.
Hence the recurrence sequence is given by

u0 = 2,

u1 = 8,

un = 8un−1 − 14un−2 n ≥ 2.

The statement follows easily since u0 = 2 · 1, u1 = 2 · 4 and un =

2 · (4un−1 − 7un−2).
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Table 6.3: Small binomial coefficients.

( 0 0

) =1
( 1 0

) =1
( 1 1

) =1
( 2 0

) =1
( 2 1

) =2
( 2 2

) =1
( 3 0

) =1
( 3 1

) =3
( 3 2

) =3
( 3 3

) =1
( 4 0

) =1
( 4 1

) =4
( 4 2

) =6
( 4 3

) =4
( 4 4

) =1
( 5 0

) =1
( 5 1

) =5
( 5 2

) =1
0

( 5 3

) =1
0

( 5 4

) =5
( 5 5

) =1
( 6 0

) =1
( 6 1

) =6
( 6 2

) =1
5

( 6 3

) =2
0

( 6 4

) =1
5

( 6 5

) =6
( 6 6

) =1
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Table 6.4: Possibilities to distribute seven gold pieces among three pirates
such that Black Bellamy gets at least one gold piece and Calico Jack gets at
least two gold pieces.

Anne Bonney Black Bellamy Calico Jack

4 1 2
0 5 2
0 1 6
3 2 2
3 1 3
1 4 2
0 4 3
1 1 5
0 2 5
2 3 2
2 1 4
0 3 4
2 2 3
1 3 3
1 2 4
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Table 6.5: First twelve rows of Pascal’s triangle.
1

1
1

1
2

1

1
3

3
1

1
4

6
4

1

1
5

10
10

5
1

1
6

15
20

15
6

1

1
7

21
35

35
21

7
1

1
8

28
56

70
56

28
8

1

1
9

36
84

12
6

12
6

84
36

9
1

1
10

45
12

0
21

0
25

2
21

0
12

0
45

10
1

1
11

55
16

5
33

0
46

2
46

2
33

0
16

5
55

11
1

1
12

66
22

0
49

5
79

2
92

4
79

2
49
5

22
0

66
12

1




