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Introduction

Theory or Practice? But why or? Theory and Practice. This is
the Ars Mathematica.

Alfréd Rényi

The word geometry means earth measurement. As far as we know the
ancient Egyptians were the �rst people to do geometry from absolutely prac-
tical points of view. The historian Herodotus relates that in 1300 BC "if a
man lost any of his land by the annual over�ow of the Nile he had to report
the loss to Pharao who would then send an overseer to measure the loss and
make a proportionate abatement of the tax" [1]. The Greeks were the �rst
to make progress in geometry in the sense that they made it abstract. They
introduced the idea of considering idealized points and lines. Using Plato's
words the objects of geometric knowledge are eternal. The Greek deductive
method gives a kind of answer to the question how to obtain information
about this idealized world. It was codi�ed by Euclid around 300 BC in his
famous book entitled Elements which is a system of conclusions on the bases
of unquestionable premisses or axioms. The method needs two fundamental
concepts to begin working: unde�ned terms such as points, lines, planes etc.
and axioms (sometimes they are referred as premisses or postulates) which
are the basic assumptions about the terms of geometry.

The material collected here try to �t the di�erent requirements coming
from the di�erent traditional points of view. One of them wants to solve
problems in practice, the other wants to develop an abstract theory indepen-
dently of the empirical world. Although it is hard to realize the equilibrium
of di�erent requirements (lecture vs. seminar or theory vs. practice) Alfréd
Rényi's Ars Mathematica [2] gives us a perfect starting point: lectures and
seminars, theory and practice.

The �rst chapter is devoted to general computational skills related to
numbers, equations, system of equations, functions etc. These tools and
the related methods are widely used in mathematics. In chapter 3 we im-
itate the deductive method by collecting basic facts in geometry. Some of

9
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them are axioms in the strict sense of the word such as the axioms of in-
cidence, parallelism, measurement axioms and congruence axiom. We have
another collection of facts which are not (or not necessarily) axioms. They
are frequently used in geometric argumentations such as the parallel line in-
tersecting theorem or the basic cases of the congruence and the similarity of
triangles. In some of these cases the proof is available later on a higher stage
of the theory. Chapter 4 is devoted to the investigation of triangles which
are the fundamental �gures in Euclidean geometry because quadrilaterals
(chapter 7) or polygons (chapter 9) are made up of �nitely many triangles
and most of not polygonal shapes like circles (chapter 10) can be imaged as
limits of polygons.

Each chapter includes exercises too. Most of them have a detailed solu-
tion. Exercises in separated chapters give an overview about the previous
chapter's material. The classical problems (chapter 6 and chapter 13) illus-
trate how to use geometry in practice. They also have a historical character
like the problem of the tunnel (section 6.1) or how far away is the Moon
(section 6.3).

Figure 1: Alfréd Rényi (1921-1970).
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Elementary Geometry
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Chapter 1

General computational skills

1.1 Numbers

Numbers are one of the most typical objects in mathematics.

1.1.1 Natural numbers

To develop the notion of numbers the starting point is formed by the so-
called natural numbers characterized by a set of axioms due to the 19th
century Italian mathematician Guiseppe Peano. The Peano axioms de�ne
the arithmetical properties of natural numbers, usually represented as a set

N = {(0), 1, 2, . . . , n, n+ 1, . . .}

The Peano's axioms are formulated as follows.

P1. 1 is a natural number (the set of natural numbers is non-empty).

The naturals are assumed to be closed under a single-valued successor -
function S(n)=n+1.

P2. S(n) belongs to N for every natural number n.

Peano's original formulation of the axioms used the symbol 1 for the "�rst"
natural number although axiom P1 does not involve any speci�c properties
for the element 1. The number 2 can be de�ned as 2=S(1) and so on: 3=S(2),
4=S(3), ... The next two axioms de�ne the properties of this representation.

P3. There is no any natural number satisfying S(n)=1.

P4. If S(m)=S(n) then m=n.

13



14 CHAPTER 1. GENERAL COMPUTATIONAL SKILLS

Figure 1.1: Graphical representation of integers.

These axioms imply that the elements 1, 2=S(1), 3=S(2), ... are distinct
natural numbers but we need the so-called axiom of induction to provide
that this procedure gives all elements of the naturals.

P5. If K is a set such that 1 is in K and for every natural number n, n is in
K implies that S(n) is in K then K contains every natural number.

1.1.2 Integers

Equation 5+x=2 has no natural solutions. Let m and n be natural numbers.
Equations of the form

m+ x = n (1.1)

without solutions among naturals lead us to new quantities called integers:

Z = {. . . ,−(n+ 1),−n, . . . ,−1, 0, 1, . . . , n, n+ 1, . . .}.

Any integer corresponds to a pair (m,n) of naturals by equation 1.1. Two
equations are called equivalent if they have exactly the same solutions. If we
add the sides of the equations m+x=n and n'=m'+x then m'+n+x=m+n'+x.
Therefore

m′ + n = m+ n′ (1.2)

is a direct consequence of the formal equivalence. The pairs (m,n) and (m',n')
satisfying equation 1.2 represent the same integer. In case of (5,2) this new
quantity will be written as - 3.
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1.1.3 Rationals

Equation 5x=2 has no integer solutions. Let m 6=0 and n be integers. Equa-
tions of the form

mx = n (1.3)

without solutions among integers lead us to new quantities called rationals:

Q = {n/m | n, m ∈ Z and m 6= 0}.

Any rational number corresponds to a pair (m,n) of integers by equation 1.3.
Two equations are called equivalent if they have exactly the same solutions.
If we multiply the sides of the equations mx=n and n'=m'x then m'nx=mn'x.
Therefore

m′n = mn′ (1.4)

is a direct consequence of the formal equivalence. The pairs (m,n) and (m',n')
satisfying equation 1.4 represent the same rational number. In case of (5,2)
this new quantity will be written as 2/5.

1.1.4 Exercises

Excercise 1.1.1 Calculate the length of the diagonal of a square with side
of unit length.

Hint. Using Pythagorean theorem we have that the diagonal is a number
satisfying equation x2 = 2.

Excercise 1.1.2 Prove that
√

2 is not a rational number.

Hint. Suppose in contrary that

√
2 =

n

m
,

where n and m are integers. Taking the square of both sides we have that

2m2 = n2,

where the left hand side contains an odd power of 2 in the prime factorization
which contradicts to the even power on the right hand side. Therefore the
starting hypothesis is false.
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Figure 1.2: The rootspiral.

1.1.5 Irrational numbers

De�nition Numbers which can not be written as the ratio of integers are
called irrational. The set of real numbers R consists of the rational and the
irrational numbers.

Irrational numbers can be imaged as limits of sequences of rational num-
bers; see subsection 1.3.1.

1.1.6 Complex numbers/vectors

To develop the notion of numbers the next level is the complex numbers
which can be interpreted as vectors or elements in the Euclidean plane. The
algebraic motivation is to provide solutions of the equation x2 = −1.

1.2 Exercises

In what follows we shall use the notation n+1 instead of S(n) for the sake of
simplicity.

Excercise 1.2.1 Using induction prove that

1 + 2 + . . .+ n =
n(n+ 1)

2
(1.5)

Solution. We can check directly that if n=1 then

1 =
1(1 + 1)

2
,
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i.e. equation 1.5 is true. Suppose that n satis�es equation 1.5, i.e.

1 + 2 + . . .+ n =
n(n+ 1)

2
(inductive hypothesis)

and prove that

1 + 2 + . . .+ n+ (n+ 1) =
(n+ 1)

(
(n+ 1) + 1

)
2

.

Let us start from the left hand side. Using the inductive hypothesis we have
that

1 + 2 + . . .+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

(n+ 1)
(
(n+ 1) + 1

)
2

.

Therefore n+1 also satis�es equation 1.5. The �nal conclusion is that the set
of natural numbers satisfying equation 1.5 covers N.

Remark As we can see induction is a useful general method to prove state-
ments related to naturals. One of its weakness is that we have to guess what
to prove.

Excercise 1.2.2 Prove the so-called Gaussian formula 1.5 without induc-
tion.

Solution. Let
sn = 1 + 2 + . . .+ n

be the partial sum of the �rst n natural number. Taking the sum of equations

sn = 1 + 2 + . . .+ n

and
sn = n+ (n− 1) + . . .+ 1

we have that
2sn = n(n+ 1)

and the Gaussian formula follows immediately.

Excercise 1.2.3 Using induction prove that

12 + 22 + 32 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
(1.6)
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Solution. Follow the steps as above to prove equation 1.6. If n=1 then we
can easily check that

12 =
1(1 + 1)(2 · 1 + 1)

6
,

i.e. equation 1.6 is true. Suppose that n satis�es equation 1.6, i.e.

12 + 22 + 32 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6

and prove that

12 + 22 + 32 + . . .+ n2 + (n+ 1)2 =
(n+ 1) ((n+ 1) + 1) (2(n+ 1) + 1)

6
.

Let us start from the left hand side. Using the inductive hypothesis we have
that

12 + 22 + 32 + . . .+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6
=

(n+ 1)
(
n(2n+ 1) + 6(n+ 1)

)
6

=

(n+ 1)(2n2 + 7n+ 6)

6
=

(n+ 1)(2n2 + 4n+ 3n+ 6)

6
=

=
(n+ 1)

(
2n(n+ 2) + 3(n+ 2)

)
6

=
(n+ 1)(n+ 2)(2n+ 3)

6
=

=
(n+ 1)

(
(n+ 1) + 1

)(
2(n+ 1) + 1

)
6

as was to be proved.

Excercise 1.2.4 Using induction prove that

3 | n3 + 5n+ 6. (1.7)

Solution. If n=1 then
13 + 5 · 1 + 6 = 12

and 3 | 12. The expression (n + 1)3 + 5(n + 1) + 6 can be written into the
form

(n+ 1)3 + 5(n+ 1) + 6 = (n3 + 5n+ 6) + 3n2 + 3n+ 6,

where, by the inductive hypothesis, each term can be divided by 3.
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Excercise 1.2.5 Prove that the solutions of the equations

x2 = 3, x2 = 5 and x2 = 7

are irrationals.

Solution. Let p be an arbitrary prime number and suppose in contrary that

√
p =

n

m

where n and m are integers. Taking the square of both sides we have that

pm2 = n2,

where the left hand side contains an odd power of p in the prime factorization
which contradicts to the even power on the right hand side. Therefore the
starting hypothesis is false.

Excercise 1.2.6 Prove that the sum and the fraction of rational numbers
are rational.

Excercise 1.2.7 Is it true or not? The sum of a rational and an irrational
number is

• rational.

• irrational.

Solution. Using the result of the previous exercise the assumption
√

2 + 3 = rational

gives a contradiction. One can easily generalize the argument for the sum of
any rational and irrational number. The method is called indirect proof.

Excercise 1.2.8 Find irrational numbers a and b such that

• a+b is rational,

• a+b is irrational,

• a/b is rational,

• a/b is irrational.
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Solution. If
a = 1−

√
2 and b =

√
2

then the sum of a+b is obviously rational. Let

a =
√

2 and b =
√

3.

If
a+ b = r then a = r − b

and
a2 = r2 − 2rb+ b2

which means that
2 = r2 − 2r

√
3 + 3,

i.e. √
3 =

r2 + 1

2r
.

This means that r can not be a rational number. If

a = b =
√

2

then its ratio is obviously rational. Finally, if

a =
√

2 + 1 and b =
√

2− 1

then

a/b =

√
2 + 1√
2− 1

=

√
2 + 1√
2− 1

·
√

2 + 1√
2 + 1

=

3 + 2
√

2

1
= 3 + 2

√
2

which is obviously irrational.

Excercise 1.2.9 Prove that x=2+3i satis�es equation

x2 − 4x+ 13 = 0

Solution. Since the imaginary unit is the formal solution of equation x2 = −1
we have that

(2 + 3i)2 − 4(2 + 3i) + 13 = 4 + 12i+ 9i2 − 8− 12i+ 13 =

4 + 12i− 9− 8− 12i+ 13 = 0

using the principle of permanence: keep all the algebraic rules of calculation
with reals.
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1.3 Limits

In this section we illustrate how irrational numbers can be interpreted as
limits of sequences of rational numbers. Taking the limit is one of the most
important operations in mathematics. It is used in the development of the
notion of numbers, the theory of length, area and volume of general shapes
(curves, surfaces and bodies) and so on. Here we apply only a kind of intuition
to create limits without precise de�nitions.

1.3.1 Approximation of irrational numbers

It can be easily seen that
1 <
√

2 < 2.

Consider the midpoint

q1 =
1 + 2

2
= 3/2

of the interval [1, 2]. Taking the square of the corresponding sides it can be
proved that

1 <
√

2 < 3/2

and we have a better approximation by the midpoint

q2 :=
1 + (3/2)

2
= 5/4.

Taking the square of the corresponding sides again it can be proved that

5/4 <
√

2 < 3/2

and the midpoint

q3 =
(5/4) + (3/2)

2
= 11/8

is a better approximation of
√

2. The method is similar to looking for a word
in a dictionary. The basic steps are

• open the dictionary in a random way (for example open the book in
the middle part)

• compare the word we are looking for with the initial letter of the words
on the sheet.
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Figure 1.3: Approximation of square root 2.

Every time we bisect the dictionary before running the algorithm again. The
process is not exactly the same but we use the same philosophy to solve the
problem of approximation of

√
2. The most essential di�erence is that the

method of �nding
√

2 is not �nite: we always have rational numbers which
means that we could not �nd the exact value of

√
2 among the members of

the sequence q1, q2, q3, ... But the errors can be estimated by decreasing
values as follows:

|
√

2− q1| < the half of the length of the interval [1, 2] =
1

2
=

1

21
.

|
√

2− q2| < the half of the length of the interval [1, 3/2] =
1

4
=

1

22
.

In a similar way

|
√

2− q3| < the half of the length of the interval [5/4, 3/2] =
1

8
=

1

23
.

In general

|
√

2− qn| <
1

2n
.

Therefore we can be as close to
√

2 as we want to. In other words the sequence
q1, q2, q3, ... tends to

√
2 and this number can be interpreted as the limit of

a sequence of rational numbers.

Remark In what follows we present a MAPLE procedure for the approxi-
mation of the square root of naturals as we have seen above: let k be a given
natural number. We are going to approximate the square root of k by using
the basic step n times. The name of the procedure is

f := proc(n, k)

At �rst we should �nd lower and upper bounds

a <
√
k < b
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as follows:
a := 1;

b := 1;

while a2 < k do

a := a+ 1;

end do;

a := a− 1;

This means that if the actual value of the variable a satis�es the inequality
a2 < k then we increase the value of the variable by adding one as far as
possible. Finally "a" takes the last value for which the inequality a2 < k is
true. The upper bound is created in a similar way:

while b2 < k do

b := b+ 1;

end do;

As the next step we give the initial value of a new variable

c :=
a+ b

2
;

and we use a "for" loop to take the half of the enclosing intervalls n times:

for i from 1to n do

if c2 < k then

a := c;

c :=
a+ b

2
;

else

b := c;

c :=
a+ b

2
;

end if;

end do;

return(c)

end proc;

The �gure shows how the procedure is working in a standard Maple worksheet
environment.
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Figure 1.4: A MAPLE procedure.

1.3.2 The problem of the shortest way

One of the most important basic fact in geometry is the so-called triangle
inequality

AC ≤ AB +BC (1.8)

to express a more general geometric principle. It says that the shortest way
between two points is the straight line. The question is how to derive this
principle from inequality 1.8 in general. The �rst step is the generalization
of the triangle inequality. Using a simple induction we can prove polygonal
inequalities

AC ≤ AB1 +B1B2 +B2C, AC ≤ AB1 +B1B2 +B2B3 +B3C and so on.

In general

AC ≤ AB1 +B1B2 +B2B3 + . . .+Bn−1Bn +BnC (1.9)

for any natural number n ≥ 3. Now image an "arc" from A to C. If the
arclength is understood as the limit of lengths of inscribed polygonal chains
in some sense then we have that the shortest way between two points is the
straight line.
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1.3.3 The area of the unit circle

Everybody knows that the area of a circle with radius r is r2π. If we have a
unit circle then the area is just π. How can we calculate the value of π?

The earliest known textually evidenced approximations of π are from
around 1900 BC. They are found in the Egyptian Rhind Papyrus

π ≈ 256/81

and on Babylonian tablets
π ≈ 25/8.

The Indian text Shatapatha Brahmana gives π as 339/108. Archimedes
(287 - 212 BC) was the �rst to estimate π rigorously. He realized that its
magnitude can be bounded from below and above by the area of inscribing
and circumscribing regular polygons. For example we can inscribe in the
circle a regular hexagon made up of six disjoint equilateral triangles of side
1. The area of each triangle is 3/(4

√
3) by Héron's formula, so the area of

the hexagon is

6
3

4
√

3
=

9

2
√

3
≈ 2.59808.

The area of the circle should be obviously greater than this value. If we
circumscribe a regular hexagon around the unit circle then the area can be
estimated from above. The area of the circle should be obviously less than
the area of the circumscribed regular hexagon of side 2/

√
3:

the area of the unit circle ≤ 6
1√
3
≈ 3.46410

and so on. Around 480 Zu Chongzhi demonstrated that π ≈ 355/113 =
3, 1415929. He also showed that 3, 1415926 < π < 3, 1415927.

The next major advances in the study of π came with the development of
in�nite series and subsequently with the discovery of calculus/analysis, which
permit the estimation of π to any desired accuracy by considering su�ciently
many terms of a relevant series. Around 1400, Madhava of Sangamagrama
found the �rst known such series:

π =
4

1
− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+ · · · .

This is known as the Madhava-Leibniz series or Gregory-Leibniz series since it
was rediscovered by James Gregory and Gottfried Leibniz in the 17th century.
Madhava was able to estimate the value of π correctly to 11 decimal places.
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The record was beaten in 1424 by the Persian mathematician, Jamshid al-
Kashi by giving an estimation that is correct to 16 decimal digits. The
accuracy up to 35 decimal digits was due to the German mathematician
Ludolph van Ceulen (1540-1610). Another European contribution to the
problem is the formula

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· · · · (1.10)

found by Francois Viéte in 1593. Formula 1.10 will be derived in section 10.3
by using inscribed regular n-gons in the unit circle.

1.4 Exercises

Excercise 1.4.1 Compute the number of steps for the approximation of
√

2
with error less than 10−10.

Solution. We have to solve the inequality

1

2n
<

1

1010
for the unknown natural number n.

Equivalently: 1010 < 2n. To solve this inequality we use the so-called loga-
rithm to have that 10 log2 10 < n. Since 10 < 24 it follows that

10 log2 10 < 10 log2 24 = 40

steps are enough to approximate
√

2 with error less that 10−10 which is just
the measure of the unit conversion between meter and Angstrom related to
atomic-scale structures.

Excercise 1.4.2 Find a sequence of rational numbers to approximate
√

5.

Solution. Using the estimations

1 <
√

5 < 3

we have

q1 :=
1 + 3

2
= 2

as the �rst member of the approximating sequence. Since

2 <
√

5 < 3
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it follows that

q2 :=
2 + 3

2
=

5

2
.

Repeating the basic steps of the dictionary method we have

2 <
√

5 <
5

2
⇒ q3 :=

2 + 5
2

2
=

9

4
,

2 <
√

5 <
9

4
⇒ q4 :=

2 + 9
4

2
=

17

8
and

17

8
<
√

5 <
9

4
⇒ q5 :=

17
8

+ 9
4

2
=

35

16
,

35

16
<
√

5 <
9

4
⇒ q6 =

35
16

+ 9
4

2
=

71

32
and so on.

Excercise 1.4.3 Consider the iterative sequence

qn+1 =
√

2 + qn,

i.e.

q1 =
√

2, q2 =

√
2 +
√

2, q3 =

√
2 +

√
2 +
√

2, . . .

Prove that
qn ≤ 2

for any element of the sequence.

Solution. It is clear that the inequality is true for n=1. Using a simple
induction

q2n+1 = 2 + qn ≤ 2 + 2 = 4.

Excercise 1.4.4 Find positive integer solutions for the equation

m2 −m− n = 0.

Solution. Using the formula for computing the roots of a quadratic equation

m12 =
1±
√

1 + 4n

2
.

Therefore 1+4n must be an odd square number:

1 + 4n = (2k + 1)2,
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1 + 4n = 4k2 + 4k + 1

which means that n must be of the form n=k(k+1), where k is an arbitrary
positive integer. In this case the positive root of the equation is m=k+1. For
example if k=1 then n=2 and m=2. Further possible solutions are n=12 and
m=4 or n=20 and m=5 under the choices of k=3 or k=4.

k n=k(k+1) m=k+1
1 2 2
2 6 3
3 12 4
4 20 5
5 30 6

Excercise 1.4.5 Consider the iterative sequence

qn+1 =
√

12 + qn,

i.e.

q1 =
√

12, q2 =

√
12 +

√
12, q3 =

√
12 +

√
12 +

√
12, . . .

Prove that
qn ≤ 4

for any element of the sequence.

Solution. It is clear that the inequality is true for n=1. Using a simple
induction

q2n+1 = 12 + qn ≤ 12 + 4 = 16.

Excercise 1.4.6 Consider the iterative sequence

qn+1 =
√

20 + qn,

i.e.

q1 =
√

20, q2 =

√
20 +

√
20, q3 =

√
20 +

√
20 +

√
20, . . .

Prove that
qn ≤ 5

for any element of the sequence.

Solution. It is clear that the inequality is true for n=1. Using a simple
induction

q2n+1 = 20 + qn ≤ 20 + 5 = 25.
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Remark The upper bounds in the previous exercises provide that the se-
quences have �nite limits. In case of the sequence

qn+1 =
√

12 + qn

we have that the limit must satisfy the equation

q∗ =
√

12 + q∗

and, consequently, it is just 4.

Excercise 1.4.7 Find the limit of the sequence

qn+1 =
√

2 + qn.

Solution. As we have seen above the sequence is bounded by 2 from above.
This means that we have a �nite limit satisfying the equation

q∗ =
√

2 + q∗.

Therefore
0 = q2∗ − q∗ − 2

which means that q∗ = 2 or - 1 but the negative value can be obviously
omitted.

Excercise 1.4.8 Find the limit of the sequence

qn+1 =
√

20 + qn.

Solution. As we have seen above the sequence is bounded by 5 from above.
This means that we have a �nite limit satisfying the equation

q∗ =
√

20 + q∗.

Therefore
0 = q2∗ − q∗ − 20

which means that q∗ = 5 or - 4 but the negative value can be obviously
omitted.

Excercise 1.4.9 Prove that

a2 − 1 = (a− 1)(a+ 1).
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Solution. It can be easily derived by direct calculation:

(a− 1)(a+ 1) = a2 + a− a− 1 = a2 − 1.

Excercise 1.4.10 Prove that

a3 − 1 = (a− 1)(a2 + a+ 1).

Solution. It can be easily derived by direct calculation:

(a− 1)(a2 + a+ 1) = a3 + a2 + a− a2 − a− 1 = a3 − 1.

The formulas involving explicite powers can be given by the help of direct
calculations.

Excercise 1.4.11 Prove that for any natural power

an − 1 = (a− 1)(an−1 + an−2 + . . .+ a+ 1).

Solution. Let
sn−1 = 1 + a+ . . .+ an−1

be the partial sum of the powers. Then

(a− 1)sn−1 = asn−1 − sn−1 = a+ a2 + . . .+ an − (1 + a+ . . .+ an−1) =

an − 1

as was to be proved.

Remark Use the procedure of the induction to prove the statement in Ex-
ercise 1.4.11.

Solution.

an+1 − 1 = an+1 − an + an − 1 = an(a− 1) + the inductive hypothesis...

Excercise 1.4.12 Calculate the sum of the series

1 +
1

2
+

1

22
+

1

23
+ . . .

Hint. Using the previous result with a = 1/2 we have that

1 +
1

2
+

1

22
+

1

23
+ . . .+

1

2n−1
=

1
2n
− 1

1
2
− 1

→ −1
1
2
− 1

= 2.

Remark We can image the sum of the geometric series

1 +
1

2
+

1

22
+

1

23
+ . . .

as taking a 2 units long walk in such a way that each sub - walk takes the
half of the distance from the staring point to the end.
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Figure 1.5: Exponentially decreasing tendency.

1.5 Functions

The approximation of square root 2 can be interpreted in the following way.

Step Value Bound for the error
1st q1 = 3/2 1/2
2nd q2 = 5/4 1/22

3rd q3 = 8/11 1/23

... ...
n - th qn 1/2n

Besides the tabular form graphical representation is widely used. Actually
this is a direct method to realize relationships and tendencies among data
items at a glance.

1.5.1 Exponentials

Exponentials are typical in mathematical modeling of growing without con-
straints (see eg. cell division, family tree). We also know that each radioac-
tive isotope has its own characteristic decay pattern. Its rate is measured
in half - life. The half - life refers to the time it takes for one - half of
the atoms of a radioactive material to disintegrate. Half - lives for di�erent
radioisotopes can range from a few microsecond to billions of years.
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Radioisotope Half - life
Polonium-215 0.0018 seconds
Bismut-212 60.5 seconds
Barium-139 86 minutes
Sodium-24 15 hours
Cobalt-60 5.26 years
Radium-226 1600 years
Uranium-238 4.5 billion years

1.5.2 Trigonometric functions

Another important type of functions are trigonometric functions; see section
4.5.

1.5.3 Polynomials

Finally we mention polynomial functions of the form

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0.

The most important special cases are n=1 (lines) and n=2 (parabolas). Poly-
nomials behave like numbers from some points of view. We can add or mul-
tiply them and we can divide two polynomials with each other too.

2x3 + x2 − 1 : x+ 1 = 2x2

− (2x3 + 2x2)

−x2 − 1 : x+ 1 =−x
− (−x2 − x)

x− 1 : x+ 1 = 1
− (x+ 1)

−2

Therefore
2x3 + x2 − 1 = (2x2 − x+ 1)(x+ 1)− 2.

An important example on a polynomial tendency is the kinematic law

for the distance travelled during a uniform acceleration starting from rest.
It is proportional to the square of the ellapsed time. This is the situation
in case of falling bodies investigated by Galileo Galilei. If we are interested
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in the distance travelled by a falling body as a function of the travelling
time it is relatively hard to create an appropriate experimental environment
for measuring. It is more reasonable to measure the travelling time as the
function of the distance. In other words we are interested in the inverse rela-
tionship (inverse function). To create a comfortable experimental situation
we can use a slope to ensure a travel during a uniform acceleration starting
from rest. A simple scale can be given by using the mid-point technic along
the slope. Theoretically we have the formula

f(s) =

√
2s

a

to give the travelling time as a function of the distance s along the slope; the
constant

a = g sinα

is related to the angle of the slope and the gravitational acceleration g. To
return to the original problem we need the inverse of the function f. Formally
speaking we want to express s in terms of t=f(s):

t =

√
2s

a
⇒ a

2
t2 = s

and, consequently, the inverse function is working as

f−1(t) =
a

2
t2

on the domain of the non-negative real numbers. Geometrically we change
the role of the coordinates x and y in the coordinate plane. Therefore the
graphs of a function and its inverse is related by the re�ection about the line
y=x as we can see in the next �gure for the exponential and the logarithmic
functions.

1.6 Exercises

Excercise 1.6.1 Suppose that you have 10 grams of Barium - 139. After
86 minutes, half of the atoms in the sample would have decayed into another
element called Lanthanum - 139. After one half - life you would have 5 grams
Barium - 139 and 5 grams Lanthanum - 139. After another 86 minutes, half
of the 5 grams Barium - 139 would decay into Lanthanum - 139 again; you
would now have 2.5 grams of Barium - 139 and 7.5 grams Lanthanum - 139.
How many time does it take to be Barium - 139 less than 1 gram?
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Figure 1.6: The exponential function and its inverse.

Time (minutes) amount of Barium - 139 (gram)
0 10
86 5

2 × 86 2.5
3 × 86 1.25
4 × 86 0.625
... ...

n × 86 10/2n

Solution. We have to solve the inequality

10

2n
< 1 ⇒ 10 < 2n.

Therefore 4 · 86 minutes is enough to be Barium - 139 less than 1 gram.

Excercise 1.6.2 Sketch the functions f(x) = 2x and g(x) = log2 x in a
common Cartesian coordinate system.

Excercise 1.6.3 Prove that log2 3 is irrational.
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Solution. Suppose, in contrary that

log2 3 =
n

m
,

where n and m6= 0 are integers. Using that log2 3m = m log2 3 we have

log2 3m = n.

By the de�nition of the logarithm this means that 2n = 3m which is obviously
impossible.

Excercise 1.6.4 Transfer the expression f(x) = 3x2−5x+3 to the canonical
form

f(x) = a(x− x0)2 + y0

and compute the minimum value of the function.

Solution. It can be easily seen that

f(x) = 3
(
x2 − (5/3)x+ 1

)
= 3

(
(x− (5/6))2 − (25/36) + 1

)
=

= 3 (x− (5/6))2 + (11/12),

i.e. the minimum value is just y0 = 11/12 attained at x0 = 5/6.

Excercise 1.6.5 Prove the formula

x12 =
−b±

√
b2 − 4ac

2a

for the roots of the equation

ax2 + bx+ c = 0

by using the canonical form of a quadratic function.

Hint. Consider the function

f(x) = ax2 + bx+ c.

Its canonical form is

f(x) = a

(
x+

b

2a

)2

− b2

4a
+ c
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which implies by taking the equation f(x)=0 that(
x+

b

2a

)2

=
b2 − 4ac

4a2
.

Therefore

x+
b

2a
= ±
√
b2 − 4ac

2a
provided that the discriminant D = b2 − 4ac is non-negative.

Excercise 1.6.6 Conclude Viéte's formulas

x1 + x2 = − b
a

and x1 · x2 =
c

a
.

Excercise 1.6.7 Find the maximum amount of square footage we can en-
close in a rectangle using a fence with 128 feet.

Solution. Let x and y be the sides of a rectangle. To �nd the maximum of
the product xy subject to the equality constrain 2(x+y)=128 consider the
function

f(x, y) = xy.

Substituting y=64 - x we can reduce the number of variables:

f(x) = x(64− x) = −x2 + 64x = −(x− 32)2 + 322.

The maximum area is just 1024 attained at x=32 which is just the case of a
square.

Excercise 1.6.8 The following table shows the average highs of temperature
measured on 15th of each month in New York City [3]. Using graphical
representation �nd the rule of the average highs. What about the temperature
on 30th of October?

Month Temperature (Fahrenheit)
February 40
March 50
April 62
May 72
Juny 81
July 85

August 83
September 78
October 66
November 56
December 40
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Figure 1.7: The graphical representation of the high temperatures.

Solution. Consider the months as independent variables x=2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12. For the sake of simplicity we illustrate the corresponding high
temperatures as T=4, 5, 6.2, ... and so on. As it can bee seen they form a
parabolic arc with canonical form

f(x) = a(x− 7)2 + 8.5.

To compute the parameter �a� we can use the following substitutions:

4 = a(2− 7)2 + 8.5 ⇒ a = −0.18,

5 = a(3− 7)2 + 8.5 ⇒ a = −0.21,

6.2 = a(4− 7)2 + 8.5 ⇒ a = −0.25

and so on. The following table shows the collection of the possible values of
the parameter "a".

x f(x)=a(x-7)+8.5 a
2 (February) 4 = a(2− 7)2 + 8.5 -0.18
3 (March) 5 = a(3− 7)2 + 8.5 -0.21
4 (April) 6.2 = a(4− 7)2 + 8.5 -0.25
5 (May) 7.2 = a(5− 7)2 + 8.5 -0.32
6 (Juny) 8.1 = a(6− 7)2 + 8.5 -0.4
7 (July) 8.5 = a(7− 7)2 + 8.5 -

8 (August) 8.3 = a(8− 7)2 + 8.5 -0.2
9 (September) 7.8 = a(9− 7)2 + 8.5 -0.17

October
November
December
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Excercise 1.6.9 Calculate the missing values of the parameter.

Solution. Using the equations

6.6 = a(10− 7)2 + 8.5,

5.6 = a(11− 7)2 + 8.5,

4 = a(12− 7)2 + 8.5

we have the values a= - 0.21, - 0.18 and - 0.18. Therefore the parameter �a�
is about - 0.2. A reasonable model to compute the average high temperature
is

T (x)/10 = −0.2(x− 7)2 + 8.5.

30/October corresponds the value x=10.5. Therefore

T (10.5) = −2(10.5− 7)2 + 85 = 60.5

Fahrenheit.

Excercise 1.6.10 Find the inverse of the function

f(x) = 3x− 4.

Solution. Express x in terms of y=f(x):

y = 3x− 4 ⇒ x =
y + 4

3
=

1

3
y +

4

3

which means that the inverse function is working as

f−1(y) =
1

3
y +

4

3
.

Excercise 1.6.11 Find the inverse of the function

f(x) = x2.

Solution. The formal method gives that

y = x2 ⇒ x =
√
y

and, consequently, the inverse function is working as

f−1(y) =
√
y

on the domain of the non-negative real numbers.
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Excercise 1.6.12 Find the inverse of the function

f(x) =
3x− 4

x− 2
.

Solution. The formal method gives that

y =
3x− 4

x− 2
,

yx− 2y − 3x+ 4 = 0,

x(y − 3)− 2y + 4 = 0,

x =
2y − 4

y − 3
.

Therefore

f−1(y) =
2y − 4

y − 3

and the domain of the inverse function does not contain the value y=3.

Excercise 1.6.13 Find the domains of the functions

f(x) =
2x− 1

x2 − x
, g(x) =

√
5− x and h(x) =

√
(x− 3)(5− x),

Solution. The domain of the function f is the set of reals except the roots
x=0 or 1 of the denominator. In case of function g we need the set of reals
satisfying

5− x ≥ 0,

i.e. the domain is the set of reals less or equal than 5. Finally we have to
solve the inequality

(x− 3)(5− x) ≥ 0.

The left hand side is non-negative if and only if

x− 3 ≥ 0 and 5− x ≥ 0

or
x− 3 ≤ 0 and 5− x ≤ 0.

Therefore
3 ≤ x ≤ 5.

Excercise 1.6.14 Find the domains of the functions

f(x) =
1

x+ 3
, g(x) =

√
2x+ 4 and h(x) =

√
(x− 2)(x+ 3),
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Solution. The domain of the function f is the set of reals except - 3. For the
function g we have

2x+ 4 ≥ 0 ⇒ x ≥ −2.

Finally we have to solve the inequality

(x− 2)(x+ 3) ≥ 0.

The left hand side is non-negative if and only if

x− 2 ≥ 0 and x+ 3 ≥ 0

or
x− 2 ≤ 0 and x+ 3 ≤ 0.

Therefore
x ≤ −3 or x ≥ 2.

Excercise 1.6.15 Express the numbers

ln
√

3 and ln
1

81

in terms of ln 3

Solution. Since √
3 = 31/2 and

1

81
= 3−4

we have that

ln
√

3 =
1

2
ln 3

and

ln
1

81
= −4 ln 3.

Excercise 1.6.16 Solve the following equations

2x3x+2 = 54, 3x2x+2 = 24 and ln
(
x(x− 2)) = 0.

Solution. To solve the �rst equation observe that

9 · 2x3x = 54,

6x = 6 ⇒ x = 1.

In a similar way
4 · 2x3x = 24,

6x = 6 ⇒ x = 1.

Finally
x(x− 2) = 1,

x2 − 2x− 1 = 0 ⇒ x12 =
2±
√

4 + 4

2
= 1±

√
2.
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1.7 Means

In practice estimations are often more important than the exact values of
quantities. Lots of numerical values are frequently substituted with only one
distinguished quantity as we have seen above in exercise 1.6.8. There are
several reasons why to use average (mean, mode, median, ecpectable value
etc.) in mathematics. An average is a measure of the middle or typical
value of a data set. The general aim is to accumulate the information or
to substitute more complicated mathematical objects with relatively simpler
ones. In what follows we summarize some theoretical methods to create an
average.

• The arithmetic mean of a �nite collection of data is

A =
x1 + x2 + . . .+ xn

n
.

• In case of nonnegative numbers we can form the so-called geometric
mean

G = n
√
x1 · x2 · . . . · xn.

• The harmonic mean of the data set is

H =
n

1
x1

+ 1
x2

+ . . .+ 1
xn

.

Remark Using Thales theorem we can interpret the arithmetic mean of
x=AF and y=FB as the radius of the circumscribed circle of a right triangle
with hypothenuse AB. The height is just the geometric mean of x and y.
Under the choice x=1 and y=n this gives an alternative method to construct
the root of any natural number n by ruler and compass. On the other hand
�gure 1.7 shows that

G ≤ A

for two variables.

In many situations involving rates and ratios the harmonic mean pro-
vides the truest average. If a vehicle travels a certain distance d at speed 60
kilometres per hour and then the same distance again at speed 40 kilometres
per hour then its average speed is the harmonic mean of 60 and 40, i.e.

2
1
60

+ 1
40

= 48.
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Figure 1.8: Arithmetic vs. geometric means.

In other words the total travel time is the same as if the vehicle had traveled
the whole distance at speed 48 kilometres per hour because

d

t1
= 60,

d

t2
= 40

and thus
2d

t1 + t2
=

2d
d
60

+ d
40

=
2

1
60

+ 1
40

.

The same principle can be applied to more than two segments of the motion:
if we have a series of sub - trips at di�erent speeds and each sub - trip
covers the same distance then the average speed is the harmonic mean of all
the sub - trip speeds. After a slight modi�cation we can give the physical
interpretation of the arithmetic mean too: if a vehicle travels for a certain
amount "t" of time at speed 60 and then the same amount of time at speed
40 then the average speed is just the arithmetic mean of 60 and 40, i.e.

60 + 40

2
= 50.

In other words the total distance is the same as if the vehicle had traveled
for the whole time at speed 50 kilometres per hour because

s1
t

= 60,
s2
t

= 40

and thus
s1 + s2

2t
=

60 + 40

2
.
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1.8 Exercises

Excercise 1.8.1 Find the arithmetic mean of the possible values of the pa-
rameter "a" in exercise 1.6.8.

Solution.

A = −0.18 + 0.21 + 0.25 + 0.32 + 0.4 + 0.2 + 0.17 + 0.21 + 0.18 + 0.18

11
=

−0.2.

Excercise 1.8.2 Prove that for any pair of positive real numbers x and y

2
1
x

+ 1
y

≤ √xy ≤ x+ y

2

.

Solution. At �rst we prove that for any pair of non-negative numbers x and
y

√
xy ≤ x+ y

2
.

Taking the square of both sides we have that

xy ≤ (x+ y)2

4

and, consequently,
4xy ≤ x2 + 2xy + y2,

0 ≤ x2 − 2xy + y2 = (x− y)2

which is obviously true. If a=1/x and b=1/y then

√
ab ≤ a+ b

2

which means that
2

1
x

+ 1
y

=
2

a+ b
≤ 1√

ab
=
√
xy

as was to be proved.

Excercise 1.8.3 Suppose that you want to create a rectangular-shaped gar-
den with area 1024 square footage. How many feet in length you need to fence
your garden?
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Hint. The problem is to minimize the perimeter among rectangles with area
1024. Let x and y be the sides of a rectangle. To �nd the minimum of the
perimeter 2(x+y) subject to the equality constrain xy=1024 introduce the
function

f(x, y) = 2(x+ y).

Substituting y=1024/x we can reduce the number of variables:

f(x) = 2

(
x+

1024

x

)
.

The relationship between the arithmetic and the geometric means shows that

f(x) = 2

(
x+

1024

x

)
= 4

x+ (1024/x)

2
≥ 4
√

1024 = 128

and equality happens if and only if x=32. This is the case of the square.

Excercise 1.8.4 Formulate the physical principle for the arithmetic mean.

Solution. If we have a series of sub - trips at di�erent speeds and each sub -
trip takes the same amount of time then the average speed is the arithmetic
mean of all the sub - trip speeds.

1.9 Equations, system of equations

The mathematical formulation of problems often gives a single equation or
system of equations (see e.g. coordinate geometry). It is important to isolate
relevant information:

A rectangular box with a base 2 inches by 6 inches is 10 inches tall
and holds 12 ounces of breakfast cereal. The manufacturer wants
to use a new box with a base 3 inches by 5 inches. How many
inches tall should be in order to hold exactly the same volume as
the original box?

relevant information irrelevant information
the base is 2× 6 inch
the tall is 10 inch, 12 ounces of breakfast cereal

the new base is 3× 5 manufacturer, inch
don't change the volume -
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Figure 1.9: Exercise 1.10.1

The only theoretical fact we need to solve the problem is that the volume
of a rectangular box is just the product of the area of the base and the tall.
Therefore we can write the equation

2 · 6 · 10 = 3 · 5 ·m,

where m denotes the unknown tall (height) of the new box. We have that
m=8. Quantities we are looking for may have a more complicated relationship
with the given data. Sometimes we should write more than one relationships
(together with new auxiliary variables) to compute the missing one.

1.10 Exercises

Excercise 1.10.1 In rectangle ABCD, side AB is three times longer than
BC. The distance of an interior point P from the vertices A, B and D are

PA =
√

2, PB = 4
√

2 and PD = 2,

respectively. What is the area of the rectangle.

Hint. Using orthogonal projections of the interior point P to the sides of the
rectangle we can use Pythagorean theorem three times:

AQ2 + AR2 = 2,

(AD − AQ)2 + AR2 = 4,

(AB − AR)2 + AQ2 = (4
√

2)2 = 32.
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Since AB=3AD we have three equations for the quantities x=AD, y=AQ
and z=AR. Namely

y2 + z2 = 2,

(x− y)2 + z2 = 4,

(3x− z)2 + y2 = 32.

We have that

4 = (x− y)2 + z2 = x2 − 2xy + y2 + z2 = x2 − 2xy + 2

and

32 = (3x− z)2 + y2 = 9x2 − 6xz + z2 + y2 = 9x2 − 6xz + 2.

Therefore

y =
x2 − 2

2x
, z =

9x2 − 30

6x
and the �rst equation gives that

(a− 2)2

4a
+

(9a− 30)2

36a
= 2,

where a=x2. From here

9(a− 2)2 + (9a− 30)2 = 72a,

90a2 − 648a+ 936 = 0.

Finally
5a2 − 36a+ 52 = 0

which means that

a12 =
36±

√
256

10
⇒ a = 2 or 5.2.

If a=2 then we have that

x2 = 2 ⇒ y = 0 and z < 0

which is impossible. Therefore

x2 = 5.2 ⇒ A = 3x2 = 15.6.

Note that there is no need to compute x because the area of the rectangle
can be given as 3x2 = 3a.

Remark Systems containing quadratic equations are typical in coordinate
geometry: the intersection of a line and a circle or the intersection of two
circles.



Chapter 2

Exercises

2.1 Exercises

Excercise 2.1.1 Without calculator �nd the values of

8
2
3 · 2−2, 77782 − 22232,

4372 − 3632

5372 − 4632
,

√
5− 2

√
6 +

√
3− 2

√
2 +

√
7− 2

√
12,(

1 +
1

2

)
·
(

1 +
1

3

)
·
(

1 +
1

4

)
· . . . ·

(
1 +

1

100

)
.

Solution. Using power law identities

8
2
3 · 2−2 =

(
8

1
3

)2
· 1

22
= 22 · 1

22
= 1.

Secondly

77782 − 22232 = (7778− 2223)(7778 + 2223) = 5555 · 10001 =

= 5555(10000 + 1) = 55550000 + 5555 = 55555555.

In the same way

4372 − 3632 = (437− 363)(437 + 363) = 74 · 800,

5372 − 4632 = (537− 463)(537 + 463) = 74 · 1000

and, consequently,
4372 − 3632

5372 − 4632
= 0.8.

47
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To compute the exact values of the roots note that

(
√

3−
√

2)2 = 3− 2
√

6 + 2 = 5− 2
√

6.

Therefore √
5− 2

√
6 =
√

3−
√

2.

In a similar way √
3− 2

√
2 =
√

2− 1,√
7− 2

√
12 = 2−

√
3.

Therefore √
5− 2

√
6 +

√
3− 2

√
2 +

√
7− 2

√
12 = 1.

Observe that

1 +
1

n
=
n+ 1

n

and thus (
1 +

1

2

)
·
(

1 +
1

3

)
·
(

1 +
1

4

)
· . . . ·

(
1 +

1

100

)
=

3

2
· 4

3
· 5

4
· . . . · 100

90
· 101

100
=

101

2
.

Excercise 2.1.2 Solve the equations:

3x− 4

3
=

5

12
, x2 − x− 6 = 0, x3 + 6x2 − 4x− 24 = 0,

1

x2 − 9
+

1

x− 3
=

48

(x− 3)(x+ 38)
.

Solution. The �rst equation says that

3x =
5

12
+

4

3
,

i.e. 3x=21/12 and thus x=7/12. Secondly

x12 =
1±
√

1 + 4 · 6
2

=
1± 5

2
.

Using the technic of division of polynomials it can be easily seen that if a
polynomial has an integer root m then it must divide the constant term. We
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are going to guess at least one of the roots of the polynomial by checking
the divisors of 24. This results in the root m=2. Using polynomial division
again

x3 + 6x2 − 4x− 24 = (x− 2)(x2 + 8x+ 12).

To �nish the solution we solve the quadratic equation

x2 + 8x+ 12 = 0

too. We have

x12 =
−8±

√
82 − 4 · 12

2
=
−8± 4

2
= −4± 2.

In case of the last equation we use the identity x2 − 9 = (x − 3)(x + 3) to
conclude that

1

x+ 3
+ 1 =

48

x+ 38

which results in a quadratic equation.

Excercise 2.1.3 Prove that√
6 +

√
6 +

√
6 +
√

6 < 3.

Solution. Taking the square of both sides systematically√
6 +

√
6 +
√

6 < 3,

√
6 +
√

6 < 3,

√
6 < 3,

6 < 9

which is obviously true.

Excercise 2.1.4 Which number is the bigger?

297 · 299 or 2982, 3452 or 342 · 348,
√

101−
√

100 or
1

20
.
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Solution. Using that

297 · 299 = (298− 1)(298 + 1) = 2982 − 1

it follows that the second number is the bigger one. In a similar way

342 · 348 = (345− 3)(345 + 3) = 3452 − 32

and 3452 is bigger than the product 342 · 348. Since

√
101−

√
100 =

(√
101−

√
100
) √101 +

√
100√

101 +
√

100
=

1√
101 +

√
100

it is enough to compare the numbers
√

101 +
√

100 and 20.

Here √
101 +

√
100 >

√
100 +

√
100 = 20

which means that

√
101−

√
100 =

1√
101 +

√
100

<
1

20
.

Excercise 2.1.5 Solve the following systems of equations

3x− 7y = 66

2x− 9y = −8

and
x2 − y = 46

x2y = 147.

Solution. In terms of coordinate geometry the solution of the �rst system of
equations gives the common point of two lines. From the �rst equation we
can write y in terms of x as follows

y =
3x− 66

7
.

Substituting this expression into the second equation we have that

2x− 9
3x− 66

7
= −8,
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14x− 9(3x− 66) = −56,

14x− 27x+ 594 = −56.

Finally

x =
650

13
= 50

and, consequently,

y =
150− 66

7
= 12.

To solve the second system of equations it seems to be more convenient to
express x2 from the �rst equation as follows

x2 = 46 + y.

By substitution
(46 + y)y = 147,

y2 + 46y − 147 = 0

which means that

y12 =
−46±

√
462 + 4 · 147

2
=
−46±

√
2704

2
=
−46± 52

2
= −23± 26.

If y = 3 then the corresponding values of x are x = ±7. If y = −49 then
there is no any corresponding value of x.

Excercise 2.1.6 Using induction prove that

13 + 23 + 33 + . . .+ n3 =

(
n(n+ 1)

2

)2

(2.1)

Solution. In case of n=1 the statement is obviously true. Using the inductive
hypothesis

13 + 23 + 33 + . . .+ n3 + (n+ 1)3 =

(
n(n+ 1)

2

)2

+ (n+ 1)3 =

=
n2(n+ 1)2 + 4(n+ 1)3

22
=

(n+ 1)2(n2 + 4(n+ 1))

22
=

(n+ 1)2(n+ 2)2

22
=

(n+ 1)2((n+ 1) + 1)2

22
=

(
(n+ 1)((n+ 1) + 1)

2

)2

as was to be proved.
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Excercise 2.1.7 Compute the values of

f(−4), f(−3) and f(2)

and sketch the graph of the function

f(x) = −1

2
x2 − x+

3

2
.

Solution. We have

f(−4) = −1

2
(−4)2 − (−4) +

3

2
=

11

2
,

f(−3) = −1

2
(−3)2 − (−3) +

3

2
= 0,

f(2) = −1

2
(2)2 − 2 +

3

2
= −5

2
.

To sketch the graph of the function consider the canonical form

f(x) = −1

2
(x+ 1)2 + 2.

Therefore the zeros of the function satisfy the equation

(x+ 1)2 = 4

which means that x1 = 1 and x2 = −3. The maximum value is just 2 attained
at the arithmetic mean of the zeros:

x max =
1 + (−3)

2
= −1.

Excercise 2.1.8 Sketch the graph of the function f(x) = x2 − 8x+ 15.

Solution. To sketch the graph of the function consider the canonical form

f(x) = (x− 4)2 − 1.

The zeros of the function satisfy the equation

(x− 4)2 = 1

which means that x1 = 3 and x2 = 5. The minimum value is just - 1 attained
at the arithmetic mean of the zeros:

x min =
3 + 5

2
= 4.
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Figure 2.1: Exercise 2.1.7

Figure 2.2: Exercise 2.1.8
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Excercise 2.1.9 Find all integer roots of the equation 2x3+11x2−7x−6 = 0
and perform the division

(2x3 + 2x− 1) : (x− 1) =

Solution. Any integer root must be a divisor of the constant term. Therefore
the possible values are

±1, ±2, ±3,±6.

Substituting these values as x we have that the integer roots are x=1 or - 6.
Finally

2x3 + 11x2 − 7x− 6 : x− 1 = 2x2

− (2x3 − 2x2)

13x2 − 7x− 6 : x− 1 =13x
− (13x2 − 13x)

6x− 6 : x− 1 = 6
− (6x− 6)

0

Therefore
2x3 + x2 − 1 = (2x2 + 13x+ 6)(x− 1).

The missing roots are

x12 =
−13±

√
132 − 4 · 2 · 6

4
=
−13± 11

4
,

i.e. x1 = −6 and x2 = −(1/2).

Excercise 2.1.10 Solve the inequality

x2 − x− 6 < 0.

Solution. The standard way of solving quadratic inequalities consists of three
steps. At �rst we determine the roots of the quadratic polynomial if exist:

x12 =
1±
√

1 + 24

2
=

1± 5

2
,

i.e. x1 = −2 and x2 = 3. Secondly we sketch the graph of the function. Since
the coe�cient of the term of highest degree is positive the corresponding
parabola is open from above (in other words it has a minimum attained at
the arithmetic mean of the roots). Finally the solutions are - 2 < x < 3.
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Figure 2.3: Exercise 2.1.10.

Excercise 2.1.11 Solve the inequality

x2 − x− 6 > 0.
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Chapter 3

Basic facts in geometry

Using Plato's words "the objects of geometric knowledge are eternal". The
Greek deductive method gives a kind of answer to the question how to obtain
information about this idealized world. It was codi�ed by Euclid around 300
BC in his famous book entitled Elements which is a system of conclusions
on the bases of unquestionable premisses or axioms. In terms of a mod-
ern language the method needs two fundamental concepts to begin working:
unde�ned terms such as points, lines, planes etc. and axioms (sometimes
they are referred as premisses or postulates) which are the basic assumptions
about the terms of geometry. Here we present a short review of axioms in Eu-
clidean plane geometry to illustrate its fundamental assumptions, methods
and speci�c points of view.

3.1 The axioms of incidence

The axioms of incidence.

• Through any two distinct points there is exactly one line.

The basic terms (like points, lines etc.) of the axiomatic system are
unde�ned. If we do not know what they mean then there is no point in asking
whether or not the axioms are true. Following one of the most expressive
examples in [1] suppose that alien beings have landed on Earth by �ying
saucer and their leader tells you that through any distinct blurgs there is
exactly one phogon. Unless you know what a blurg and a phogon you will
have no way of telling whether or not this statement is true. On the other
hand there may be many di�erent interpretations of the unde�ned terms such
as points, lines etc. in an axiomatic system for geometry. An interpretation
which makes all the axioms true is called a model for the axiomatic system;

57
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because theorems are all deduced logically from the axioms they will be true
in any model as well. To understand the role of models we can consider the
classical coordinate geometry as one of the model for the Euclidean plane
geometry. Points are interpreted as pairs of real numbers (coordinates) and
lines are interpreted as point - sets satisfying equations of special type. In
this interpretation the �rst axiom of incidence can be checked in the following
way: consider the points (x1, y1) and (x2, y2) in the plane; the line passing
through these points is just the set of points whose coordinates satisfy the
equation

y − y1
y2 − y1

=
x− x1
x2 − x1

provided that the �rst coordinates of the given points are di�erent. In case
of x1 = x2 the equation of the corresponding line is just x= constant.

Remark As we have seen above points can be interpreted as pairs of real
numbers. The lines correspond to more complicated algebraic objects called
equations. This is the reason why such a model for the Euclidean geometry
is called analytic. It can be easily generalized by admitting more than two
coordinates. This results in the geometry of higher dimensional Euclidean
spaces. To illustrate what happens note that lines in the space have system
of equations of the form

z − z1
z2 − z1

=
y − y1
y2 − y1

=
x− x1
x2 − x1

or
z = z1,

y − y1
y2 − y1

=
x− x1
x2 − x1

in case of z1 = z2 and so on.

• Any line contains at least two distinct points and we have at least three
distinct points which do not lie on the same line.

The statement is labelled as the dimension axiom because it says essen-
tially that lines are one-dimensional and the plane is of dimension two.

De�nition Points lying on the same line are called collinear.

3.2 Parallelism

Finally we present the most famous axiom of Euclidean plane geometry which
can be expressed in terms of incidence. This is called Euclid's parallel pos-
tulate.
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De�nition Two lines in the plane are parallel if they have no any point in
common or they coincide.

• Let l be a line and P be a point in the plane; there is one and only one
line e that passes through P and parallel to l.

Theorem 3.2.1 If l is parallel to e and e is parallel to m then l is parallel
to m.

Proof Suppose that l and m has a point P in common. Since both of the
lines are parallel to e we have by the parallel axiom that l=m. Otherwise
they are disjoint.

Remark De�nitions are shortcut notations from the logical point of view.
Theorems are deduced logically from the axioms or other theorems which
has been proved.

3.3 Measurement axioms

Another important question is how to measure distance between points in
the plane. Like points, lines etc. the absolute distance can also be a new
unde�ned term in our geometry. The main question is not what is the dis-
tance but how to measure the distance. The physical instrument to realize
distance measurements is a ruler. Its abstract (idealized) version is called
the ruler axiom.

• Let l be an arbitrary line in the plane. A ruler for l is a one-to-one
correspondence between the points in l and the set of real numbers
in such a way that the distance between the points A and B in l is
just the absolute value of the di�erence of the corresponding reals: if A
corresponds to the real number a and B corresponds to the real number
b then

d(A,B) = |a− b|.
The ruler axiom postulates the existence of such a ruler for any line in
the plane.

By the help of a ruler we can use the standard ordering among real num-
bers to de�ne segments and half - lines. Let A and B be two distinct points
in the plane and consider the line l passing through the given points. If a <
b then the straight line segment joining A and B is de�ned as

AB := { C ∈ l | a ≤ c ≤ b},
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Figure 3.1: Congruence axiom.

where the points correspond to the real numbers a, b and c under a ruler.
The half - line starting from A to B is created by cutting the points with
coordinates c < a. Segments and half - lines correspond to intervals of the
form [a,b] where the starting or the end point can be positioned at plus or
minus in�nity.

There are several ways of introducing the concept of angle in geometry.
Here we consider this concept as a new unde�ned term governed by its own
axioms. Instead of the precise formulation we accept that the protractor
axiom formulates the abstract (idealized) version of the physical instrument
for measuring angles in the real world.

3.4 Congruence axiom

Using a ruler and a protractor we can compare and copy segments and angles
in the plane. The next important question is how to compare and copy
triangles.

Let a triangle ABC be given in the plane and consider an arbitrary half -
line starting from a point A'. Using a ruler we can copy the segment AB from
A' into the given direction. This results in a point B' such that AB=A'B'.
Using a protractor and a ruler again we can construct a point C' such that

α = the measure of 6 CAB = the measure of 6 C ′A′B′ = α′

and A'C'=AC. What about the the missing sides BC and B'C', the missing
angles γ and γ' or β and β'? Unfortunately we can not know anything about
them because nor the axioms of incidence neither the measurement axioms
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carry any information about the missing data of the triangles. If we want to
make them congruent then we have to postulate them to be congruent.

De�nition If there is a correspondence between the vertices of two triangles
in such a way that all corresponding sides and all corresponding angles are
congruent then the triangles are congruent copy of each other.

The congruence axiom allows us to deduce the congruence of triangles
under a reduced system of information.

• If there is a correspondence between the vertices of two triangles in
such a way that two sides and the angle enclosed by them in one of the
triangles are congruent to the corresponding sides and the correspond-
ing angle in the second of the triangles then the triangles are congruent
copy of each other.

Sometimes it is referred as side - angle - side - axiom or SAS - axiom.

3.5 Area

Formally speaking [1] area can be considered as a new unde�ned term in
the axiomatic system of geometry. Some obvious requirements can be for-
mulated as follows. Let a polygonal region be de�ned as the �nite union of
triangles such that the members of the union have at most common sides
or vertices. The area of a bounded polygonal region is a non-negative real
number satisfying the following properties:

• (area invariance axiom) The area is invariant under the isometries
(chapter 12) of the plane.

• (area addition axiom) The area of the union of two poligonal regions
is just the sum of the areas of the regions provided that they have at
most common sides or vertices.

• (area normalization axiom) The area of a rectangle of sides a and b is
just a·b.

3.6 Basic facts in geometry

In what follows we summarize some further facts which will be frequently
used in the forthcoming material. We would like to emphasize that they are
not necessarily axioms but we omit the proofs for the sake of simplicity.
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Figure 3.2: Triangle inequalities.

3.6.1 Triangle inequalities

They are special forms of the basic principle in geometry saying that the
shortest way between two points is the straight line segment. Consider a
triangle with vertices A, B and C. Let us denote the sides opposite to the
corresponding vertices by a, b and c. Then

a+ b > c, c+ a > b and b+ c > a.

Corollary 3.6.1 For the sides a, b and c of a triangle

|a− b| < c, |a− c| < b and |b− c| < a.

Remark If a < b < c then the corollary says that

• the interval [a,b] can be covered by the third side of the triangle,

• the interval [a,c] can be covered by the second side of the triangle,

• the interval [b,c] can be covered by the �rst side of the triangle.

3.6.2 How to compare triangles I - congruence

The basic cases of congruence of triangles are

• SAS (two sides and the angle enclosed by them), i.e.

a = a′, b = b′ and γ = γ′

(see congruence axiom).

• ASA (one side and the angles on this side), i.e.

c = c′, α = α′ and β = β′
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Figure 3.3: Congruent triangles.

Figure 3.4: The case SsA

• SAA (one side and two angles), i.e.

c = c′, α = α′ and γ = γ′

• SSS (all sides), i.e.

a = a′, b = b′ and c = c′

• SsA (two sides and the angle opposite to the larger one),

a = a′, b = b′ and α = α′ provided that a > b.

Theorem 3.6.2 (The geometric characterization of the perpendicular bi-
sector) The perpendicular bisector of a segment is the locus of points in the
plane having the same distance from each of the endpoints.

Proof Let AB be a segment with midpoint F and consider the line l through
F in such a way that l is perpendicular to the line AB. If X is a point in l then
the triangles AFX and BFX are obviously congruent to each other because of
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Figure 3.5: Bisectors.

the congruence axiom SAS. Therefore AX=BX. Conversely if AX=BX then
the triangles AFX and BFX are congruent because of SSS. Therefore the
angles at F are equal and their sum is 180 degree in measure. This means
that the line XF is just the perpendicular bisector of the segment.

Excercise 3.6.3 Formulate the geometric characterization of the bisector of
an angle in the plane.

Hint. Since the triangles FXA and FXB are congruent the bisector is the
locus of points in the plane having the same distance from each of the arms
of the angle.

Theorem 3.6.4 The ordering among the sides of a triangle is the same as
the ordering among the angles of the triangle.

3.6.3 Characterization of parallelism

The essential di�erence between the parallel axiom and the other ones is
hidden in the notion of parallelism itself. The parallelism involves the idea of
in�nity in a rather important way. If we know that two lines are not parallel
we still have no idea how far one may have to trace along them before they
actually meet. The idea of in�nity is always problematic because many errors
in mathematics arise from generalizations to the in�nite of what is known
true for the �nite. As one of interesting examples consider a hotel having
as many rooms as many natural numbers we have. Is it possible to provide
accommodation for one more guest if all of rooms are occupied? The answer
is de�nitely yes because if the guest in room n is moving into room n+1 then
room 1 becomes free. In what follows we present a method of checking the
parallelism by measuring angles instead of taking an in�nite - long walk.

Excercise 3.6.5 Let e and f be parallel lines in the plane and consider a
transversal f . Find the relationships among the inclination angles.
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Figure 3.6: Characterization of parallelism.

Theorem 3.6.6 (Characterization of parallelism) The lines e and f are par-
allel if and only if one of the following relationships is true for the inclination
angles:

β = δ′, β + γ = 180◦ or β = δ.

Excercise 3.6.7 Prove that the sum of the interior angles of a triangle is
180 degree in measure.

Hint. Let ABC be a triangle. Taking the line l through the point C in such
a way that l is parallel to the side AB, the statement is a direct consequence
of the characterization of parallelism.

3.6.4 How to compare triangles II - similarity

Theorem 3.6.8 (Parallel lines intersecting theorem) Let e and e' be two
lines in the plane meeting at the point O. If the lines a and b are parallel to
each other such that the line a meets e and e' at the points A and A', the
line b meets e and e' at the points B and B' then

OA : OB = OA′ : OB′.

In the Hungarian educational tradition it is a theorem. It is also possible
to consider the statement as an axiom; see Similarity axiom in [1].

De�nition Let e and e' be two lines in the plane meeting at the point O.
We say that the points O, A, B on the line e correspond to the points O, A',
B' on the line e' if they have the same ordering, i.e. the line e separates A'
and B' if and only if the line e' separates A and B.
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Figure 3.7: Parallel lines intersecting theorem.

Figure 3.8: Similar triangles.

Theorem 3.6.9 (The converse of the parallel lines intersecting theorem) Let
e and e' be two lines in the plane meeting at the point O. If the line a meets
e and e' at the points A and A', the line b meets e and e' at the points B and
B' such that O, A, B correspond to O, A', B' and OA : OB = OA′ : OB′

then the lines a and b are parallel.

The parallel lines intersecting theorem (and its converse) together with
the basic cases of the congruence of triangles give automatically the basic
cases of similarity.

De�nition If there is a correspondence between the vertices of two triangles
in such a way that all corresponding angles are congruent and the ratios
between the corresponding sides are also equal then the triangles are said to
be similar.

The basic cases of similarity of triangles are

• S'AS' (two sides and the angle enclosed by them), i.e.

a : a = b : b′ and γ = γ′.

• AAA (all of angles), i.e.

α = α′, β = β′ and γ = γ′,
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• S'S'S' (all sides), i.e.
a : a′ = b : b′ = c : c′

• S's'A (two sides and the angle opposite to the larger one),

a : a′ = b : b′ and α = α′ provided that a > b.
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Chapter 4

Triangles

4.1 General triangles I

Let us start with the collection of distinguished points, lines and circles re-
lated to a triangle

De�nition The lines passing through the midpoints of the sides of a triangle
are called midlines.

Using the converse of the parallel lines intersecting theorem 3.6.9 it can
be easily seen that any midline is parallel to the corresponding side and the
line segment between the midpoints is just the half of this side.

Theorem 4.1.1 The perpendicular bisectors of the sides of a triangle are
concurrent at a point which is just the center of the circumscribed circle.

Proof The statement is a direct consequence of the geometric characteriza-
tion 3.6.2 of the bisector of a segment.

Figure 4.1: Midlines

69



70 CHAPTER 4. TRIANGLES

Figure 4.2: Circumcircle

Figure 4.3: Incircle

Theorem 4.1.2 The bisectors of the interior angles of a triangle are con-
current at a point which is just the center of the inscribed circle.

Proof The statement is a direct consequence of the geometric characteriza-
tion of the bisector of an angle.

Theorem 4.1.3 The altitudes of a triangle are concurrent at a point which
is called the orthocenter of the triangle.

Proof Consider the triangle constituted by the parallel lines to the sides
passing through the opposite vertices. The orthocenter of the triangle ABC
is the center of the circumscribed circle of A'B'C'.

De�nition The medians of a triangle are the straight lines joining the ver-
tices and the midpoints of the opposite sides.
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Figure 4.4: Orthocenter - the intersection of the altitudes

Figure 4.5: Barycenter - the intersection of the medians

Theorem 4.1.4 The medians are concurrent at a point which is called the
barycenter/centroid of the triangle. This point divides the medians in the
ratio 2 : 1.

Proof It can easily seen that

• the triangle FSD is similar to the triangle CSA,

• the triangle DSE is similar to the triangle ASB.

The ratio of the similarity is 1 : 2. This means that the medians BE and CF
intersect AD under the same ratio. Therefore they are concurrent at S.

Remark Each median bisects the area of the triangle.

4.2 The Euler line and the Feuerbach circle

Theorem 4.2.1 The orthocenter M, the center O of the circumscribed circle
and the barycenter S are collinear. The point S divides the segment MO in
the ratio 2 : 1. The common line of the points M, O and S is called the Euler
line.
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Figure 4.6: Euler-line

Figure 4.7: Central similarity

Proof The proof is based on the central similarity with respect to the
barycenter. A central similarity is a point transformation P → P ′ of the
plane such that

• there is a distinguished point C which is the only �xpoint (center) of
the transformation,

• P, C and P' are collinear,

• there is a real number λ 6= 0 such that

CP ′ : CP = |λ|.

If λ > 0 then P and P' are on the same ray emanating from C. In case
of λ < 0 the center separates P and P'.

According to the converse of the parallel lines intersecting theorem any
line is parallel to the image under a central similarity. Consider now the cen-
tral similarity with center S and ratio - 1/2. Then each vertex is transferred
into the midpoint of the opposite side and each altitude is transferred into
the perpendicular bisector of the corresponding side. This means that M'=O
proving the statement.
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Figure 4.8: Feuerbach-circle

De�nition The image of the circumscribed circle under the similarity with
center S and ratio - 1/2 is called the Feuerbach circle of the triangle.

Theorem 4.2.2 The Feuerbach circle passes through nine points:

• the midpoints of the sides,

• the legs of the altitudes,

• the midpoints of the segments joining the orthocenter and the vertices
A, B and C.

Proof The Feuerbach circle passes through the midpoints of the sides be-
cause the circumscribed circle passes through the vertices. The radius R'
of the Feuerbach circle is just R/2 because of the similarity ratio. Since S
divides the segment MO in the ratio 2 : 1 the center O' of the Feuerbach
circle is the midpoint of the segment MO. Therefore O'G is the midline of
the trapezoid DMOE and G bisects the segment DE. This means that DO'E
is an isosceles triangle with

O′D = O′E = R/2

and the leg point D of the altitude belonging to the side c is on the Feuerbach
circle. Finally O'F is a midline in the triangle CMO. Therefore

O′F =
1

2
CO = R/2

as was to be stated.
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Figure 4.9: Triangles

4.3 Special triangles

Triangles can be classi�ed by angles or sides. In what follows we shall use
the basic notations

• A, B and C for the vertices,

• α, β and γ for the angles at the corresponding vertices and

• a, b and c for the opposite sides to the angles α, β and γ, respectively.

The most important cases of special triangles are

• equilateral (regular) triangles: all sides and all angles are equal to each
other,

• isosceles triangles: two sides and the opposite angles are equal to each
other,

• acute triangles: all angles are less than 90 degree,

• right triangles: one of the angle is 90 degree in measure,

• obtuse triangle: one of the angle is greater than 90 degree

or mixed cases: for example isosceles right triangles. One of the oldest fact
in geometry is Pythagorean theorem for right triangles.

Theorem 4.3.1 (Pythagoras, 570 BC - 495 BC) The sum of the squares of
the legs is just the square of the hypothenuse:

a2 + b2 = c2.
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Figure 4.10: Pythagorean theorem.

Proof If we divide a square with sides of length a+b into �ve parts by the
�gure then the area can be computed as

(a+ b)2 = 4
ab

2
+ c2.

Pythagorean theorem follows immediately by the help of an algebraic calcu-
lation.

Remark The meaning of hypothenuse is stretched. The word refers to the
ancient method to create right angles by a segmental string in ratio 3 : 4 :
5. Note that

32 + 42 = 52.

Theorem 4.3.2 (Height theorem) If m denotes the altitude belonging to the
hypothenuse in a right triangle then m2 = pq, where p and q are the lengths
of the segments from the vertices to the leg point of the altitude.

Proof By Pythagorean theorem in the triangles CTB, CTA and ABC

p2 +m2 = a2, q2 +m2 = b2, a2 + b2 = c2.

Therefore

p2 + q2 + 2m2 = a2 + b2 = c2 = (p+ q)2 = p2 + q2 + 2pq

which means that m2 = pq.
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Figure 4.11: Height theorem.

Remark In other words the altitude m is the geometric mean of p and q.

Theorem 4.3.3 (Leg theorems) a2 = cp and b2 = cq.

Proof As above
p2 +m2 = a2 and q2 +m2 = b2,

where m is the geometric mean of p and q. Therefore (for example)

a2 = p2 +m2 = p2 + pq = p(p+ q) = pc

as was to be stated.

Remark This collection of theorems (Pythagorean, Height and Leg the-
orems) are often referred as similarity theorems in right triangles because
there are alternative proofs by using the similar triangles CTB, CTA and
ABC.

Theorem 4.3.4 (Thales theorem) If A, B and C are three di�erent points
on the perimeter of a circle such that AB is one of the diagonals then ABC
is a right triangle having the angle of measure 90 degree at C.

Proof Let O be the center of the circle. Since

OA = OB = OC = r

it follows that AOC and BOC are isosceles triangles. Therefore

6 OAC = 6 OCA = α, 6 OBC = 6 OCB = β

and, consequently,

2(α + β) = 180 ⇒ α + β = 90.
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Figure 4.12: Thales theorem.

Remark Thales theorem is actually the special case of a more general ob-
servation called inscribed angle theorem: let A, B and C be three di�erent
points on the perimeter of a circle with center O and suppose that the angles
6 AOB and 6 ACB are lying on the same arc. Then

6 AOB = 26 ACB

because
6 AOB = ω = 2α + 2β = 2(α + β) = 26 ACB.

The proof is based on the isosceles triangles AOC and BOC.

4.4 Exercises

Excercise 4.4.1 Collect the facts we used to prove Pythagorean theorem.

Solution. The proof of Pythagorean theorem is based on

• the area of squares, right triangles and the basic principles of measuring
the area,

• the sum of angles in a (right) triangle is 180 degree,

• algebraic identities.

Excercise 4.4.2 Prove the height and the leg theorems by using similar tri-
angles. Conclude Pythagorean theorem too.
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Figure 4.13: Inscribed angle theorem

Excercise 4.4.3 Find the missing quantities in each row of the following
table.

a b c m p q
12 3

4 16
6 9

6 9
6 8

Hint. Use Pythagorean, height and leg theorems:

a2 + b2 = c2, m2 = pq, a2 = cp and b2 = cq.

Excercise 4.4.4 Find the length of the side of a regular triangle inscribed
in the unit circle.

Hint. Using Thales theorem the triangle ABC in the �gure has a right
angle at the vertex C. Therefore

x2 + 12 = 22,

i.e. x =
√

3.

Excercise 4.4.5 In a right triangle the length of the longest side AB is 6.
The leg BC is 3.
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Figure 4.14: Exercise 4.4.4

• Calculate the missing leg and the area of the triangle.

• What is the radius of the inscribed circle?

• What are the sine, cosine, tangent and cotangent of the angle at A?

4.5 Trigonometry

Euclidean geometry is essentially based on triangles. The metric properties
of triangles (the length of the sides or the measure of the angles) can be
described by elegant formulas. They are very important in practice too (see
chapter 6). The word trigonometry directly means the measuring of triangles.
Using the basic cases of similarity it can be easily seen that two right trian-
gles with acute angles of the same measure are similar. Therefore the ratios
between the legs and the hypothenus are uniquely determined by the angles.
This results in the notion of sine, cosine, tangent and cotangent in the fol-
lowing way. Let α be an acute angle, i.e. 0 < α < 90◦. If ABC is a right
triangle with legs AC and BC and the angle at the corner A is α then

• the sine of α is the ratio between the opposite leg and the hypothenuse:
sinα = a/c,

• the cosine of α is the ratio between the adjacent leg and the hy-
pothenuse: cosα = b/c
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Figure 4.15: Trigonometry in a right triangle

• the tangent of α is the ratio between the opposite and the adjacent leg:
tanα = a/b,

• the cotangent of α is the ratio between the adjacent leg and the opposite
leg: cotα = b/a.

We can easily conclude that

sinα = cos(90− α) and cosα = sin(90− α),

sin2 α + cos2 α = 1

(trigonometric Pythagorean theorem),

tanα =
sinα

cosα
, cotα =

cosα

sinα
, tanα =

1

cotα
,

tanα = cot(90− α) and cotα = tan(90− α).

It is hard to create a geometric con�guration to �nd the sine and cosine
(tangent and cotangent) of a given angle in general. The so-called additional
rules help us to solve such kind of problems.

Theorem 4.5.1 (Additional rules)

sin(α + β) = sinα cos β + cosα sin β,

cos(α + β) = cosα cos β − sinα sin β.

Special case are

sin 2α = 2 sinα cosα,

cos 2α = cos2 α− sin2 α.
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Figure 4.16: Additional rules

Proof Using the notations in the �gure we �nd that

sin(α + β) =
DF

DO
.

For the sake of simplicity suppose that DO = BO = 1. Therefore

sin(α + β) = DF = DE + EF = DE + CG = CD cosα + CO sinα =

sin β cosα + cos β sinα.

On the other hand

cos(α + β) = OF = OG−GF = OG− CE = CO cosα− CD sinα =

cos β cosα− sin β sinα

as was to be proved.

The additional rules can be used to extend the notion of sine, cosine, tangent
and cotangent. Using the decomposition 90=45+45 we have immediately
that

sin 90 = 2 sin 45 cos 45 = 1 and cos 90 = cos2 45− sin2 45 = 0.

The extension in mathematics is usually based on the principle of perma-
nence. This means that we would like to keep all the previous rules (cf. the
extension of powers from naturals to rationals). As another example compute
sin 105 with the help of decomposition 105=60+45:

sin 105 = sin(60 + 45) = sin 60 cos 45 + cos 60 sin 45 =

√
3

2

1√
2

+
1

2

1√
2
.
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New relationships can be created such as

sin(α + 90) = sinα cos 90 + cosα sin 90 = cosα,

cos(α + 90) = cosα cos 90− sinα sin 90 = − sinα.

Especially the sine is positive in the second quadrant of the plane but the
cosine has a minus sign. In a similar way

sin 180 = 2 sin 90 cos 90 = 0 and cos 180 = cos2 90− sin2 90 = −1.

Therefore

sin(α + 180) = − sinα and cos(α + 180) = − cosα,

i.e. both the sine and the cosine are negative in the third quadrant. To
investigate the fourth quadrant verify that

cos 270 = 0 and sin 270 = −1.

We have that the sine is negative in the last quadrant but the cosine keeps
its positive sign because of

sin(α + 270) = − cosα < 0 and cos(α + 270) = sinα > 0

for any acute angle α. Finally

sin(α + 360) = sinα and cos(α + 360) = cosα.

The periodicity properties show that the process of extension goes to the
end. From now on trigonometric expressions can be considered as functions
[6]. The domain of the sine and cosine functions are the set of all angles
measured in degree or radian. In mathematics the radian is more typical
because it is directly related to the geometric length of the arc along a unit
circle (a circle having radius one). The angle belonging to the arc of unit
length is 1 radian in measure. The relationship between the degree and the
radian is just

α (deg)
360

=
α (rad)

2π
.

Remark To memorize the signs of trigonometric expressions consider the
motion of a point along the unit circle centered at the origin in the Eu-
clidean coordinate plane. The cosine and the sine functions give the �rst
and the second coordinates in terms of the rotational angle. Obviously we
have positive coordinates in the �rst quadrant. After entering in the second
quadrant the �rst coordinate must be negative and so on. For the illustration
of the trigonometric functions see �gures 4.17 and 4.18.
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Figure 4.17: The sine function

Figure 4.18: The tangent function
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Figure 4.19: Exercise 4.6.2

4.6 Exercises

Excercise 4.6.1 Compute the exact values of sine, cosine, tangent and cotan-
gent functions for the following angles:

45, 30, 60.

Solution. From an isosceles right triangle we have that

sin 45 = cos 45 =
1√
2
.

From a regular triangle with sides of unit length we have that

cos 60 = sin 30 =
1

2

and

sin 60 = cos 30 =

√
3

2
.

Excercise 4.6.2 Compute the exact values of sine, cosine, tangent and cotan-
gent functions for the following angles:

72, 36, 18.

Solution. Consider a regular 10�gon inscribed in the unit circle. As the �gure
shows the triangles OAB and DOA are similar which means that

1 : x = (1 + x) : 1,
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where x denotes the length of the side AB. We have a quadratic equation

x2 + x− 1 = 0.

Therefore

x =
−1 +

√
5

2
.

To express (for example) cos 72 consider the perpendicular bisector of the
side AB in the triangle OAB. Since the radius is 1 we have that

cos 72 = x/2

and, consequently,
sin 72 =

√
1− (x/2)2

by the trigonometric Pythagorean theorem. On the other hand

cos 18 = sin 72 and sin 18 = cos 72.

To determine the trigonometric expressions of the angle 36 degree in measure
use the perpendicular bisector belonging to the side OD in the triangle OBD.
Since the radius of the circle is 1 we have that

cos 36 = (1 + x)/2 and sin 36 =
√

1− (1 + x)2/4.

Excercise 4.6.3 Compute the exact values of sine, cosine, tangent and cotan-
gent functions for the following angles:

75, 54, 22.5.

Solution. Using the decompositions

75 = 45 + 30, and 54 = 36 + 18

the additional rules give the values of sine, cosine tangent and cotangent.
Finally

45 = 2 · 22.5

and
cos 45 = cos2 22.5− sin2 22.5 = 1− 2 sin2 22.5

because of the trigonometric Pythagorean theorem

cos2 α + sin2 α = 1.

Therefore

sin 22.5 =

√
1− cos 45

2

and so on.
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Figure 4.20: Sine rule - acute angles

Excercise 4.6.4 Express

cos 3α, sin 3α, cos 4α, sin 4α, . . .

in terms of sinα and cosα.

Excercise 4.6.5 Sketch the graph of the cosine function.

Hint. Use that
cosα = sin(α + 90).

Excercise 4.6.6 Explain where the name tangent comes from?

Excercise 4.6.7 Sketch the graph of the cotangent function.

Hint. Use that
cotα = tan(90− α) = − tan(α− 90).

4.7 General triangles II - Sine and Cosine rule

One of the most important applications of the extended sine and cosine
functions is to conclude the sine and cosine rules for general triangles.

4.7.1 Sine rule

First of all we investigate the case of acute triangles (all the angles are less
than 90 degree in measure). To present the sine rule let us start with the
circumscribed circle of the triangle ABC. The center is just the intersection
of the perpendicular bisectors of the sides. Since BOC is an isosceles triangle
the inscribed angle theorem says that

6 DOC = α,
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Figure 4.21: Sine rule - an obtuse angle

where D is the midpoint of BC. Therefore

sinα =
a/2

R
⇒ 2R =

a

sinα
.

Theorem 4.7.1 (Sine rule)

a

sinα
=

b

sin β
=

c

sin γ
= 2R.

Excercise 4.7.2 Prove the sine rule in case of obtuse triangles.

Hint. Observe that sin(180− α) = sinα.

4.7.2 Cosine rule

The cosine rule is the generalization of Pythagorean theorem. At �rst we
discuss acute triangles again. Using the altitude belonging to the side b we
express the square of a in two steps by using Pythagorean theorem. If X is
the foot point of the altitude then we can write that

AX = c cosα and BX = c sinα.

Therefore

a2 = BX2 +XC2 = BX2 + (CA− AX)2 = c2 sin2 α + (b− c cosα)2 =

c2 sin2 α + c2 cos2 α + b2 − 2bc cosα = c2 + b2 − 2bc cosα.
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Figure 4.22: Cosine rule - acute angles

Theorem 4.7.3 (Cosine rule)

a2 = c2 + b2 − 2bc cosα.

b2 = c2 + a2 − 2ac cos β,

c2 = a2 + b2 − 2ab cos γ.

Excercise 4.7.4 Prove the cosine rule in case of obtuse triangles.

Hint. Observe that if α > 90 then the foot point of the altitude belonging to
b is outside from the segment AC. We should use the acute angle α′ = 180−α
to express AX and BX as above:

AX = c cosα′ and BX = c sinα′.

Therefore

a2 = BX2 +XC2 = BX2 + (CA+ AX)2 = c2 sin2 α′ + (b+ c cosα′)2 =

c2 + b2 + 2bc cosα′ = c2 + b2 − 2bc cosα

because of
cos(180− α) = − cosα.

4.7.3 Area of triangles

In what follows we shall use the axioms of measuring area; see section 3.5.
The area of right triangles. Using the area addition axiom we can easily
conclude that the area of a right triangle with legs a and b is just ab/2. The
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Figure 4.23: Cosine rule - an obtuse angle

altitude belonging to the hypothenuse divides the right triangle into two right
triangles. Therefore we have the following formula to compute the area:

A =
pm

2
+
qm

2
=

(p+ q)m

2
=
cm

2
,

where m denotes the altitude (height) belonging to the hypothenuse c. The
legs are working as altitudes belonging to each other.
The area of a general triangle can be also computed by the area addition
axiom. The basic formulas to compute the area are

A =
ama

2
=
bmb

2
=
cmc

2
,

where ma, mb and mc denote the altitudes belonging to the sides a, b and
c, respectively. In practice it is usually hard to measure the altitude (i.e.
the distance between a line and a point) in a direct way. Using elementary
trigonometry (trigonometry in a right triangle) we can substitute the altitude
belonging to a as

ma = b sin γ or ma = c sin β.

Therefore we have the following trigonometric formulas

A =
ab sin γ

2
=
ac sin β

2
=
bc sinα

2

to compute the area. Another way is given by Héron's formula

A =
√
s(s− a)(s− b)(s− c),

where

s =
a+ b+ c

2
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is the so-called semiperimeter. The area of a triangle is closely related to the
the radius r of the inscribed circle. Since the bisectors of the interior
angles divide the triangle into three parts through the center of the inscribed
circle and each of these triangles has altitude r we have that

A =
ar

2
+
br

2
+
cr

2

and, consequently,

r =
A

s
, (4.1)

where s is the semiperimeter.

4.8 Exercises

Excercise 4.8.1 Two sides of a triangle and the angle enclosed by them are
given: 3, 4 and 60 degree in measure.

• Find the missing side and angles.

• Calculate the area of the triangle.

• Calculate the radius of the circumscribed circle of the triangle.

Hint. See the case SAS.

Excercise 4.8.2 Three sides of a triangle ABC are given: 6, 8 and 12.

• Is it an acute, right or obtuse triangle?

• Calculate the area of the triangle.

• Calculate the radius of the circumscribed circle of the triangle.

Hint. See the case SSS. To decide whether ABC is an acute, right or obtuse
triangle it is enough to compute the angle opposite to the longest side of
length 12:

122 = 62 + 82 − 2 · 6 · 8 · cos γ ⇒ cos γ =
62 + 82 − 122

2 · 6 · 8
< 0

which means that we have an obtuse angle.

Excercise 4.8.3 Three sides of a triangle are given: 8, 10 and 12.
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• Calculate the heights and the area of the triangle.

• Calculate the biggest angle of the triangle.

• Calculate the radius of the circumscribed circle of the triangle.

Excercise 4.8.4 The sides of a triangle are a=5, b=12 and c=13. Calculate
the angle opposite to the side c.

Excercise 4.8.5 Three sides of a triangle are given: 3, 4 and
√

13.

• Find the angles of the triangle.

• Calculate the area of the triangle.

• Calculate the radius of the circumscribed circle of the triangle.

Excercise 4.8.6 Two sides of a triangle are a=8 and b=6, the angle α oppo-
site to the side a is 45 degree in measure. Calculate the length of the missing
side and �nd the area of the triangle.

Hint. See the case SsA.

Excercise 4.8.7 Two sides of a triangle are a=8 and b=6, the angle β oppo-
site to the side b is 45 degree in measure. Calculate the length of the missing
side and �nd the area of the triangle.

Excercise 4.8.8 Find the missing quantities in each row of the following
table.

a b c α β γ Area R r
12 20 40◦

12 60◦ 40◦

20 110◦ 40◦

13.4 18.5 110◦

24 25 30
19 12 9
8 10 20

20 25 60◦

8 10 40
8 10 5

75◦ 25◦ 80◦ 1

Warning. Observe that the cosine rule gives impossible values in case of a=8,
b=10 and c=20 (cf. triangle inequalities).
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Excercise 4.8.9 Prove Héron' s formula.

Hint. Express the cosine of the angle γ from the cosine rule:

cos γ =
a2 + b2 − c2

2ab
.

Conclude that

sin γ =
√

1− cos2 γ =

√
1− (a2 + b2 − c2)2

4a2b2
.

Use the trigonometric formula to express the area only in terms of the sides
of the triangle:

A =
ab sin γ

2
=
ab

2

√
1− (a2 + b2 − c2)2

4a2b2
.

Excercise 4.8.10 Prove that if a polygonal shape has an inscribed circle
then the radius can be expressed as the fraction A/s, where A is the area of
the polygonal shape and s is the half of its perimeter.



Chapter 5

Exercises

5.1 Exercises

Excercise 5.1.1 The radius of the circumscribed circle around a right tri-
angle is 5, one of the legs is 6. What is the area of the triangle?

Solution. Thales theorem says that the hypothenuse is just c = 2 · 5 = 10.
Therefore the missing leg must satisfy the equation

x2 + 62 = 102

which means that x = 8. The area is

A =
6 · 8

2
= 24.

Excercise 5.1.2 The legs of a right triangle are 6 and 8. How much is the
angle of the medians belonging to the legs?

Figure 5.1: Exercise 5.1.2

93
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Figure 5.2: Exercise 5.1.3

Solution. Let AC = 6 and BC = 8. At �rst we compute the lengths of the
medians by Pythagorean theorem:

32 + 82 = BF 2 and 62 + 42 = AG2.

Therefore BF =
√

73 and AG =
√

52. It is known that the medians intersect
each other under the ratio 1 : 2. Therefore we have a triangle constituted by

• the midline FG parallel to the hypothenuse AB=10 (from the Pythago-
rean theorem)

• (1/3) BF and (1/3) AG.

Using the cosine rule it follows that the angle ω enclosed by the medians
satis�es the equation

52 =

(
BF

3

)2

+

(
AG

3

)2

− 2

(
BF

3

)(
AG

3

)
cosω.

Explicitly

cosω =
73 + 52− 225

2
√

73 · 52
= − 50√

3796
≈ −0.811.

Therefore ω ≈ 144.194◦. Usually we consider the acute angle 180 - ω as the
angle of medians.

Excercise 5.1.3 The lengths of the medians of an isosceles triangle are 90,
51 and 51. What is the length of the sides, and the measure of the angles of
the triangle?

Solution. Let AB be the side belonging to the longest median. Since the
medians intersect each other by the ratio 1 : 2 we have a right triangle to
compute AB/2 because (

AB

2

)2

+ 302 = 342.
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Therefore AB/2 = 16. Secondly the common length of the missing sides can
be computed by Pythagorean theorem again:

CB2 = 162 + 902 = 8356 ⇒ CB = 2
√

2089.

To compute the angles we can use elementary trigonometry in right triangles.
For example

tan
γ

2
=
BD

CD
=

8

90

and the common measure of the missing angles can be computed as

α = β =
180− γ

2
.

Excercise 5.1.4 One of the angle of an isosceles triangle is 120 degree, the
radius of the inscribed circle is 3. How long are the sides of the triangle?

Solution. To solve the problem we use the basic cases of similarity. It is
clear that an obtuse angle (like 120) can not be repeated inside a triangle
which means that the missing angles must be equal to each other. They
are 30 degree in measure. Since the angles are given the triangle ABC is
determined up to similarity. We can choose one of the side arbitrarily: let
(for example) the side AB where the equal angles are lying on is of length 2.
The common length x of the missing sides can be determined by the cosine
rule

22 = x2 + x2 − 2 · x · x · cos 120

i.e. x = 2/
√

3. Now we can compute the radius of the inscribed circle by the
formula

r =
A

s
,

where

A =
(2/
√

3)(2/
√

3) sin 120

2
=

1√
3

is the area and

s =
AB + AC + CB

2
=

2 + x+ x

2
= 1 + x = 1 +

2√
3
≈ 2.1547

is the semiperimeter (the half of the perimeter of the triangle). Finally the
ratio of the similarity is just r : 3 which means that the real size of the
triangle ABC is

2 : AB =
r

3
and (2/

√
3) : AC = (2/

√
3) : BC =

r

3
.
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Excercise 5.1.5 One of the angle of a triangle is 120 degree, one of the
sides is just the arithmetic mean of the others. What is the ratio of the sides.

Solution. Suppose that a ≤ b ≤ c. Then we have to write that

b =
a+ c

2
,

i.e.
2 =

a

b
+
c

b
.

On the other hand c must be opposite to the angle of measure 120 degree.
Using the cosine rule

c2 = a2 + b2 − 2ab cos 120.

Therefore (c
b

)2
=
(a
b

)2
+ 1 +

a

b

because of cos 120 = - 1/2. We have two equations with two unknown
parameters x = a/b and y = c/b :

2 = x+ y and

y2 = x2 + 1 + x.

Therefore
(2− x)2 = x2 + 1 + x,

3 = 5x ⇒ x =
3

5
and y =

7

5
.

Excercise 5.1.6 The sides of a triangle have lengths AC = BC =
√

3 and
AB=3.

• Determine the angles and the area of the triangle.

• What is the radius of the inscribed circle.

Solution. Since it is an isosceles triangle the common measure of the angles
lying on the side AB can be easily computed by elementary trigonometry. If
D is the midpoint of the segment AB then

cosα =
AD

AC
=

√
3

2
.
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Figure 5.3: Exercise 5.1.6

Therefore α = β = 30 and γ = 120. The area is

A =

√
3
√

3 sin 120

2
=

3
√

3

4
.

To compute the radius of the inscribed circle we need the ratio of the area
and the semiperimeter

s =
AC +BC + AB

2
=

2
√

3 + 3

2
.

Finally

r =
A

s
=

3
√

3

2(2
√

3 + 3)
.

Excercise 5.1.7 Calculate the length of the sides of an equilateral triangle
inscribed in a circle of radius 10. Calculate the area of this triangle and the
ratio of the areas of the triangle and the circle.

Hint. See excercise 4.4.4.

Excercise 5.1.8 Two sides of a triangle are a=6 and b=3, the angle α op-
posite to the side a is 60 degree in measure. Calculate the missing side and
angles. Find the area of the triangle.

Solution. The �rst step is to compute the missing side by the help of the
cosine rule:

62 = 32 + c2 − 2 · 3 · c · cos 60,

0 = c2 − 3c− 27.

Therefore

c12 =
3±
√

9 + 4 · 27

2
=

3±
√

117

2
=

3± 3
√

13

2
.
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The only possible choice is

c =
3 + 3

√
13

2
≈ 6.91.

This gives the area immediately by the fomula

A =
3 · 3+3

√
13

2
· sin 60

2
≈ 8.98.

One of the missing angle can be computed by the help of the cosine rule
again:

c2 = 62 + 32 − 2 · 6 · 3 · cos γ ⇒ γ ≈ 94.42.

Finally β = 180− α− γ.

Excercise 5.1.9 The area of a right triangle is 30, the sum of the legs is 17.
Calculate the sides of the triangle.

Solution. Since ab/2=30 and a+b=17

60 = ab = a(17− a)

which results in a quadratic equation

a2 − 17a+ 60 = 0

for the unknown length a of one of the legs. We have

a12 =
17±

√
172 − 4 · 60

2
=

17±
√

49

2
= 12 or 5.

If a = 12 then b = 5 and if a = 5 then b = 12.

Excercise 5.1.10 Calculate the area of the bright part in the �gure.

Solution. The area is the sum

A = 2 · 1 +
4 + 2

2

√
3 + 3

√
3

given by the area of a rectangle, a trapezoid and three equilateral triangles
with sides of length 2.

Excercise 5.1.11 Two sides of a triangle are 8 and 15, its area is 48. How
long is the third side?
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Figure 5.4: Exercise 5.1.10

Solution. Using the trigonometric formula it follows that

48 =
8 · 15 · sin γ

2
,

i.e. sin γ =0.8. We are going to use the cosine rule to compute the side c
opposite to the angle γ. We have that

cos2 γ = 1− sin2 γ = 1− 0.64 = 0.36

and, consequently, cos γ = 0.6 or cos γ = - 0.6 (an acute or an obtuse angle).
The cosine rule says that the possible values of the missing side are

c1 =
√

82 + 152 − 2 · 8 · 15 · 0.6 = 12.04

or
c2 =

√
82 + 152 + 2 · 8 · 15 · 0.6 = 20.8

Excercise 5.1.12 Two sides of a triangle are 8 and 12, the median segment
belonging to the third side is 9. What is the area of the triangle?

Solution. Since
82 = x2 + 92 − 2 · x · 9 · cosω

and
122 = x2 + 92 − 2 · x · 12 · cos(180− ω)

we have that
82 + 122 = 2x2 + 2 · 92
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Figure 5.5: Exercise 5.1.12

because of
cosω = − cos(180− ω).

Therefore x =
√

23. On the other hand

cosω =
23 + 81− 64

2 ·
√

23 · 9
≈ 0.46 > 0,

which means that
sinω =

√
1− 0.462 ≈ 0.88.

The area of the triangle ABC is obviously the sum of the areas of triangles
ADC and CDB:

A =
x · 9 · sinω

2
+
x · 9 · sin(180− ω)

2
= 2

x · 9 · sinω
2

≈ 37.98

because of
sinω = sin(180− ω).



Chapter 6

Classical problems I

"The great book of Nature lies ever open before our eyes and the true phi-
losophy is written in it ... But we cannot read it unless we have �rst learned
the language and the characters in which it is written ... It is written in
mathematical language and the characters are triangles, circles and other
geometric �gures..." (Galileo Galilei)

6.1 The problem of the tunnel

Problem [4]: Due to the increasing population a certain city of ancient Greece
found its water supply insu�cient, so that water had to be channeled in
from source in the nearby mountains. And since, unfortunately, a large hill
intervened, there was no alternative to tunneling. Working from both sides
of the hill, the tunnelers met in the middle as planned. How did the planners
determine the correct direction to ensure that the crews would meet?
Solution. Since the points A (city) and B (source) cannot be connected
directly we have to connect them indirectly. Let C be a point from which
both A and B are observable. By measuring the distances AC, BC and the
angle γ we can easily �nd the angles α and β by the help of the cosine rule.
Inputs: CA, CB and γ
1. Compute

AB =
√
CA2 + CB2 − 2 · CA · CB · cos γ.

2. Compute

cosα =
AB2 + AC2 − CB2

2 · AC · AB
and β = 180− (α + γ).

Excercise 6.1.1 Find the solution if

AC = 2 Miles, BC = 3 Miles and γ = 53◦.
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Figure 6.1: The problem of the tunnel - one observer

Figure 6.2: Two observers

Excercise 6.1.2 Can you generalize the method by using more than one
observers?

6.2 How to measure an unreachable distance

In many practical situations the direct measuring of distances is impossible;
see for example astronomical measurements or navigation problems. Instead
of distances we can measure visibility angles. The following problem is related
to the determination of an unreachable distance by measuring visibility angles
and a given base line.
Problem: Let the distance of the segment AB be given and suppose that we
know

• the visibility angle α of BD from A,

• the visibility angle β of AC from B,

• the visibility angle γ of CD from A,

• the visibility angle δ of CD from B.
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Figure 6.3: Unreachable distance

How can we calculate the distance CD?
Solution: The sine rule in the triangle ABC shows that

AB

AC
=

sin(π − (α + β + γ))

sin β
=

sin(α + β + γ)

sin β

and thus

AC =
sin β

sin(α + β + γ)
AB.

In a similar way

AD

AB
=

sin(β + δ)

sin(π − (α + β + δ))
=

sin(β + δ)

sin(α + β + δ)
.

Therefore

AD =
sin(β + δ)

sin(α + β + δ)
AB.

Using the cosine rule in the triangle ADC

CD2 = AC2 + AD2 − 2 · AC · AD · cos γ.

6.3 How far away is the Moon

Problem [4]: How are we to measure the distance of the Moon from the
Earth?
Solution. Since the distance between the Earth and the Moon cannot be
measured directly it must be measured indirectly. The calculation needs
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Figure 6.4: How far away is the Moon

accessible distances like the distance between the observers A and B along
the perimeter of the Earth. They measure simultaneously the inclination
angles of the segments AM and BM to the vertical lines of their positions. If
we know the radius of the Earth then we can calculate the distance OM in
the following way.
Inputs: the arclength from A to B, α, β and the radius R of the Earth.
1. Compute the central angle θ by the formula

θ (degree)
360

=
the arclength from A to B

2Rπ
.

Using that AOB is an isosceles triangle

6 OAB = 6 OBA =
180− θ

2
.

2. Compute α′ and β′ by the formulas

α′ = 180− α− 180− θ
2

and β′ = 180− β − 180− θ
2

.

3. Compute the length of the segment AB by using the cosine rule in the
isosceles triangle AOB:

AB2 = 2R2 − 2R2 cos θ.

From now on the triangle AMB is uniquely determined up to congruence
because we know one side and the angles lying on this side.
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4. Compute AM by using the sine rule in the triangle AMB.
5. Compute OM by using the cosine rule in the triangle OAM.

Remark One obstacle remains; the Moon moves relatively to the Earth. If
the observers measure the angles in di�erent times then we are confronted
with a quadrilateral instead of a triangle and the method has failed. For
triangulation the angles must be measured simultaneously. It is clear that
if the observer positions are too close to each other then AM and BM are
almost parallel. For accurate measures almost parallel lines must be avoided.
But how is the measurer at B to know when the measurer at A is measuring?
The ancient Greek's answer to the problem is based on a simple observation.
Since both measurers observe the Moon the best is to wait for a signal by the
observed object. In other words measurers had to wait for some happening
on the Moon visible from Earth. What happening? A lunar eclipse. The
eclipse provides four distinct events which are observable simultaneously from
A and B:

• the beginning of the Moon's entry to the Earth's shadow,

• the completion of the Moon's entry to the Earth's shadow,

• the beginning of the Moon's emergence from the Earth's shadow,

• the completion of the Moon's emergence from the Earth's shadow.
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Chapter 7

Quadrilaterals

In Euclidean plane geometry quadrilaterals mean polygons with four sides
and four vertices. Quadrilaterals (or polygons) are tipically built from trian-
gles which may have only common vertices or sides. Especially the quadrilat-
erals are the union of two triangles having exactly one common side. Some-
times one admits the union of two triangles with exactly one common vertex
to be a quadrilateral but these self-intersecting or crossed cases will not
be important for us. We restrict ourselves to the case of simple (not self-
intersecting) polygons.

7.1 General observations

Theorem 7.1.1 The sum of the interior angles of a quadrilateral is just 360
degree in measure.

Corollary 7.1.2 Any quadrilateral has at most one concave interior angle.
Quadrilaterals having concave angles are called concave quadrilaterals. Oth-
erwise the quadrilateral is convex.

In what follows we summarize some types of quadrilaterals. The most
important special class is formed by parallelograms because of their central
role in the development of the Euclidean geometry. After declaring the ax-
ioms of Euclidean geometry we can prove lots of equivalent characterization
for a convex quadrilateral to be a parallelogram. Some of them is crucial to
prove the parallel lines intersecting theorem 3.6.8.
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Figure 7.1: Characterization of parallelograms

7.2 Parallelograms

De�nition A parallelogram is a quadrilateral with two pairs of parallel sides.
The most important special cases are

• squares (all the sides and all the interior angles of the parallelogram
are equal),

• rectangle (all the interior angles of the parallelogram are equal),

• rhombus (all the sides of the parallelogram are equal).

Theorem 7.2.1 The quadrilateral ABCD is a paralellogram if and only if
one of the following conditions is satis�ed.

• The opposite sides are of equal length.

• the opposite angles are equal.

• One of the pairs of the opposite sides are of equal length and parallel.

• It is symmetric with respect to the intersection of the diagonals.

• The diagonals bisect each other.

Proof If ABCD is a parallelogram then ASA implies that any diagonal di-
vides the parallelogram into congruent triangles. Therefore both the oppo-
site sides and the opposite angles are equal. On the other hand the diagonals
bisect each other because they divide the parallelogram into four triangles
which are pairwise congruent.

The proofs of the converse statements are also based on the cases of con-
gruence of triangles and the characterization of parallelism. If the opposite
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Figure 7.2: Parallel lines intersecting theorem: the �rst step

sides are of equal length then SSS implies that any diagonal divides the
quadrilateral into congruent triangles. Therefore the corresponding angles
have the same measure. In the sense of the characterization of parallelism
we have that the opposite sides are parallel.

Since the sum of the interior angles is 360 degree in measure the equality
of the opposite angles means that the sum of angles lying on the same side is
180 degree. The characterization of parallelism says that the opposite sides
are parallel.

If one of the pairs of the opposite sides are of equal length and parallel
then the characterization of parallelism and SAS implies that any diagonal
divides the quadrilateral into congruent triangles. The proof can be �nished
as above.

The last two statements are obviously equivalent to each other. Therefore
it is enough to discuss one of them. The symmetry with respect to the
intersection of the diagonals obviously implies that the opposite sides are
parallel.

As an application we prove the parallel lines intersecting theorem 3.6.8
1st stepWe can conclude that the parallel projections of congruent segments
are congruent: if OA=AB then the triangles OAA' and ABC are congruent
and AC=A'B'by theorem 7.2.1. Therefore OA:OB=OA':OB'=1:2.
2nd step In case of not necessarily congruent segments OA and AB let n
be an arbitrary integer and divide the segment OA into n equal parts by the
points

X0 = O, X1, . . . , Xn = A.

Continue the proccess of copying the segment of length OA/n from A into
the direction of B as far as we have

k
OA

n
≤ OB ≤ (k + 1)

OA

n
.
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Using the �rst step the parallel projections

X ′0 = O, X ′1, . . . , X
′
n = A′

gives the divison of OA' into n equal parts. On the other hand

k
OA′

n
≤ OB′ ≤ (k + 1)

OA′

n
.

Therefore
k

n
≤ OB

OA
≤ k + 1

n
and

k

n
≤ OB′

OA′
≤ k + 1

n

which means that ∣∣∣∣OBOA − OB′

OA′

∣∣∣∣ ≤ 1

n

for any integer n ∈ N. Taking the limit n→∞ we have that

OB

OA
=
OB′

OA′

as was to be stated.

7.3 Special classes of quadrilaterals

De�nition A quadrilateral is called trapezoid if it has at least one pair
of opposite sides which are parallel. An isosceles trapezoid or symmetric
trapezoid have equal base angles in measure.

De�nition A quadrilateral is called kite if two pairs of adjacent sides are of
equal length.

Excercise 7.3.1 Prove that in case of a kite the angles between the two pairs
of equal sides are equal in measure and the diagonals are perpendicular.

Solution. From the de�nition of a kite one of the diagonal divides the kite
into congruent triangles by the basic case SSS of the congruence. The per-
pendicularity follows directly from the geometric characterization of the per-
pendicular bisector.
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Figure 7.3: Axially symmetric quadrilaterals

7.3.1 Symmetries

Suppose that the quadrilateral ABCD has an axial symmetry, i.e. we have
a line such that the quadrilateral is invariant under the re�ection about this
line. Since any vertex must be transformed into another one we have that

k + l = 4,

where the number k of the vertices which are not on the axis of symmetry
must be even. The possible cases are k=0, 2 or 4:

0 + 4 = 4, 2 + 2 = 4 and 4 + 0 = 4.

The case k = 0 is obviously impossible. If we have 2 vertices on the axis of
symmetry then the quadrilateral must be a convex or concave kite. Otherwise
it is a symmetric trapezium.

De�nition Rotational symmetry of order n with respect to a particular
point means that rotations by angle 360/n does not change the object.

Excercise 7.3.2 Prove that quadrilaterals with symmetry of order 2 are par-
allelograms

Excercise 7.3.3 Prove that quadrilaterals with symmetry of order 4 are
squares.
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7.3.2 Area

The area of a polygonal region can be computed as the sum of the areas of
subtriangles. In what follows we consider some special cases with explicit
formulas. They are easy consequences of the triangle decomposition. The
area of a

• parallelogram is the product of one of the parallel bases and the altitude
belonging to this base. The trigonometric version of the formula is

A = ab sinα.

This follows easily from the division of the parallelogram into congruent
triangles by one of the diagonals.

• trapezoid can be computed as

A =
a+ c

2
m,

where a and c are the lengths of the parallel bases and m is the altitude
of the trapezoid. One can introduce the mid-line segment for trapezoids
on the model of triangles in the same way: the midline of a trapezoid
is just the line segment joining the midpoints of the legs. Using the
division of the trapezoid into triangles by one of the diagonals it can
be easily seen that the length of the midline of a trapezoid is just the
arithmetic mean of the lengths of the parallel bases. Another way to
conclude the area formula is to put two congruent copies of the trape-
zoid next to each other in such a way that they form a parallelogram.
In terms of geometric transformation it can be realized by a central
re�ection about the midpoint of one of the legs.

• convex quadrilateral is just

A =
ef sinω

2
,

where e and f are the lengths of the diagonals and ω is the angle enclosed
by them.

Excercise 7.3.4 Prove the area formula of a parallelogram.

Excercise 7.3.5 Prove the area formula of a trapezoid.

Excercise 7.3.6 Prove the area formula of a kite.
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Theorem 7.3.7 Let ABCD be a convex quadrilateral. The area can be com-
puted as

A =
AC ·BD · sinω

2
,

where ω is the angle enclosed by the diagonals AC and BD.

Proof Let E be the point where the diagonals meet at. The triangles AEB,
BEC, CED and DEA covers the quadrilateral such that we have only common
vertices and edges. Therefore the area can be computed as the sum

A = AAEB + ABEC + ACED + ADEA.

Since the angles at the common vertex E are alternately ω and 180 - ω we
can conclude that

A =
AE · EB + EB · EC + EC · ED + ED · EA

2
sinω =

AC ·BD · sinω
2

,

where ω is the angle enclosed by the diagonals AC and BD.

Excercise 7.3.8 Let ABCD be a convex quadrilateral. Find the point in the
plane to minimize the sum

XA+XB +XC +XD.

Solution. By the triangle inequality the point X must be the intersection of
the diagonals AC and BD.
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Chapter 8

Exercises

8.1 Exercises

Excercise 8.1.1 Three sides of a symmetrical trapezoid are of length 10.
The fourth side has length 20. Calculate the angles and the area of the trape-
zoid.

Solution. Using the symmetry we can easily change the trapezoid into a
rectangle. Let ABCD be a symmetrical trapezoid having sides of length AB
= 20, BC = AD = 10 and CD = 10. The orthogonal projection C'D' of CD
onto the longer base AB is of length 10 again. Therefore AD'=5 and BC' =
5 because of the symmetry. From the right triangle AD'D we have that the
height is

DD′ =
√

102 − 52 =
√

75.

The sides of the rectangle is just a = AB - BC' = 20 - 5 = 15 and b =
√

75.
The area is

A = 15
√

75 = 75
√

3.

The angles are alternately 60 and 120 degree in measure.

Figure 8.1: Exercise 8.1.1

115



116 CHAPTER 8. EXERCISES

Figure 8.2: Exercises 8.1.2 and 8.1.3

Excercise 8.1.2 The sides AB and BC of rectangle ABCD are 10 and 6.
What is the distance of a point P on the side AB from the vertex D if

AP + PC = 12.

Solution. From the right triangle PBC

PB2 + 62 = PC2,

i.e.
(10− AP )2 + 36 = PC2.

Since AP+PC=12

(10− AP )2 + 36 = (12− AP )2

and
4 · AP = 8 ⇒ AP = 2.

Finally
PD2 = 62 + 22 ⇒ PD =

√
40.

Excercise 8.1.3 In a symmetrical trapezoid the inclination angle of the di-
agonal to the longer parallel base is 45 degree, the length of the diagonal is
10. What is the area of the trapezoid?

Solution. Using the symmetry we can easily change the trapezoid into a
rectangle. Since the diagonal bisects the angles of the rectangle it must
be a square. The common length x of the sides can be derived from the
Pythagorean theorem

x2 + x2 = 102 ⇒ x =
√

50 = 5
√

2

and the area is x2 = 50.
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Figure 8.3: Exercise 8.1.4

Excercise 8.1.4 The side of the square ABCD is 10. Calculate the radius
of the circle which passes through the point A, and touches the sides BC and
CD.

Solution. Divide the problem into two parts. At �rst let us concentrate on
the circles touching the sides BC and CD. The center of such a circle must
be on the diagonal CA of the square. Let x be the distance of the center
from C. Pythagorean theorem says that

x2 = r2x + r2x, i.e. x = rx
√

2,

where rx is the radius of the circle. It is labelled by the coordinate x. The
point A has coordinate xA = 10

√
2. The circle passes through A if and only

if
|x− xA| = rx, i.e. x− 10

√
2 = rx or 10

√
2− x = rx.

We have
rx
√

2− 10
√

2 = rx or 10
√

2− rx
√

2 = rx.

Therefore

rx =
10
√

2√
2− 1

or rx =
10
√

2√
2 + 1

.

Excercise 8.1.5 In rectangle ABCD side AB is three times longer then BC.
The distance of an interior point P from the vertices B, A and D is PB =
4
√

2, PA =
√

2 and PD = 2. What is the area of the rectangle.
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Figure 8.4: Exercise 8.1.6

For the solution see Exercise 1.10.1 in section 1.10, Chapter 1.

Excercise 8.1.6 The shortest diagonal of a parallelogram has length 8, the
angle of the diagonals is 45 degree, and its area is 40. Calculate the perimeter
of the parallelogram.

Solution. The area must be the sum of the areas of triangles AFB, BFC, CFD
and DFA. They are pairwise congruent and we also know that the diagonals
of a parallelogram bisect each other. If x=AF=FC then

40 = 2
x · 4 · sin 45

2
+ 2

4 · x · sin(180− 45)

2
.

Since sin 45 = sin (180 - 45) it follows that x = 10/
√

2. Using the cosine rule
in the triangle BFC

BC2 = 42 + x2 − 2 · 4 · x · cos 45 = 16 + 50− 40 = 26.

In a similar way

AB2 = 42 + x2 − 2 · 4 · x · cos(180− 45) = 42 + x2 + 2 · 4 · x · cos 45 = 106.

Therefore BC≈5.09, AB≈10.29 and the perimeter is P≈30.76.

Excercise 8.1.7 The length of the mid - line of a symmetric trapezium is
10, the diagonals are perpendicular to each other. What is the area of the
trapezium.

Solution. Because of the symmetry

x = DE = CE and y = AE = BE.

The parallel bases can be computed by the Pythagorean theorem:

CD =
√

2x and AB =
√

2y.
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Figure 8.5: Exercise 8.1.7

Figure 8.6: Exercise 8.1.8

Since the length of the mid - line is 10 we have that

10 =

√
2x+

√
2y

2
.

From here

x+ y =
20√

2

and the area is

A =
x2

2
+

y2

2
+ 2

xy

2
=

(x+ y)2

2
= 100.

Excercise 8.1.8 The diagonals of a trapezium are perpendicular. The lengths
of the parallel sides are 17 and 34, one of the legs is

√
964. How long is the

second leg, what is the area, and the height of the trapezium.

Solution. The triangles AEB and CED are similar. The ratio of the similarity
is just 2=34/17. Therefore

AE = 2 · EC and BE = 2 ·DE.
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Suppose that
BC =

√
964.

By Pythagorean theorem in the right triangles BEC and CED:

BE2 + CE2 = 964 ⇒ 4 ·DE2 + CE2 = 964,

CE2 +DE2 = 172.

Therefore
3 ·DE2 = 675 ⇒ DE = 15

and CE=8. This means that AE=16 and BE=30. The second leg is

AD =
√
AE2 +DE2 =

√
481.

The area is

A =
AE ·BE

2
+
BE · CE

2
+
CE ·DE

2
+
DE · AE

2
= 540.

Since

540 =
34 + 17

2
m

the height of the trapezium is m = 1080/51 = 360/17.

Excercise 8.1.9 The parallel bases of a symmetrical trapezoid are 10 and
20. The height is 4.

• Calculate the area of the trapezoid.

• Calculate the angles of the trapezoid.

Excercise 8.1.10 The longest base of a symmetrical trapezoid is 20, the
length of the legs is 5, the height is 4.

• Calculate the area of the trapezoid.

• Calculate the angles of the trapezoid.

Excercise 8.1.11 In kite ABCD we know that AB = BC = 2 and CD = DA.
At vertex A the angle is 120 degree, and at D the angle is 60 degree. Calculate
the unknown angles, sides and diagonals of the kite and furthermore, the
radius of the inscribed circle.
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Figure 8.7: Exercise 8.1.11

Solution. Since we have equal adjacent sides it follows that both ACD and
ABC are equilateral triangles. Therefore we have a rhombus with sides of
length 2. The angles are alternately 60 and 120 degree in measure. Since
ABC is an equilateral triangle the diagonal AC is 2 too. To compute the
length of the longer diagonal we can use the cosine rule

BD2 = 22 + 22 − 2 · 2 · 2 · cos 120 = 12.

The radius of the inscribed circle is just

r =
A

s
,

where the semiperimeter s is 4. To compute A we use the trigonometric
formula for the area

A = 2 · 2 · sin 60 = 2
√

3.

Therefore

r =

√
3

2
.

Excercise 8.1.12 The perimeter of the rhombus is 40, its area is 96. What
are the angles, sides, and diagonals of the rhombus.

Solution. If a denotes the common length of the sides of the rhombus then
40 = 4a, i.e. a = 10. To compute the area we can write that

96 = 102 sinα



122 CHAPTER 8. EXERCISES

and, consequently sinα = 0.96. This means that the angles are α1 ≈ 73.74
and α2 = 180−α1 ≈ 106.26. Using the cosine rule systematically the length
of the diagonals are

d1 =
√

102 + 102 − 2 · 10 · 10 · cosα1

d2 =
√

102 + 102 − 2 · 10 · 10 · cosα2 =
√

102 + 102 + 2 · 10 · 10 · cosα1.

Since α1 is an acute angle

cosα1 =
√

1− 0.962 = 0.28.

Therefore
d1 =

√
144 = 12 and d2 =

√
256 = 16.

Excercise 8.1.13 The length of the two diagonals of a rhombus are given:
6 and 12.

• Calculate the area of the rhombus!

• Calculate the length of the sides of the rhombus!

• Calculate the angles of the rhombus!

Excercise 8.1.14 The longer diagonal of a rhombus is given: 12, and one
of the angle of the rhombus is 60 degree in measure.

• Calculate the area of the rhombus.

• Calculate the length of the sides of the rhombus.

Excercise 8.1.15 The length of the side of a rhombus is just the geometric
mean of the diagonals. What is the ratio of the two diagonals.

Solution. Let e and f be the lengths of the diagonals. The diagonals of a
rhombus are perpendicular to each other because of the geometric character-
ization of the perpendicular bisector. Therefore

a2 =
e2

4
+
f 2

4
.

On the other hand a2 = ef . This means that

ef =
e2

4
+
f 2

4
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Figure 8.8: Geometric probability

and

4 = x+
1

x
,

where x = e : f. Therefore

0 = x2 − 4x+ 1

and

x12 =
4±
√

12

2
= 2±

√
3.

Excercise 8.1.16 Prove that

2 +
√

3 =
1

2−
√

3
.

Excercise 8.1.17 Two persons are going to meet within one hour. They
agree that any of them will wait for the other at most 20 minutes. What is
the probability of the meeting.

Solution. First of all we should �nd a mathematical model of the problem.
Let x and y be the arriving time of persons A and B, respectively. These are
randomly chosen from the interval [0,1]. In other words any event correspond
to a point P(x,y) of the square with sides of unit length. A and B meet if
and only if the absolute value of the di�erence y - x is less or equal than 0.3
hour=20 minutes. We are going to compute what is the area of the set of
points satisfying the inequalities

−0.3 ≤ y − x ≤ 0.3.
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These points represent successful outcomes. Using the area which is missing:

The area of successfull outcomes = 1− (1− 0.3)2

2
− (1− 0.3)2

2
= 0.51.

Therefore the probability is

P =
the area of successful outcomes
the area of all the outcomes

= 0.51.



Chapter 9

Polygons

9.1 Polygons

In general polygons are plane �gures bounded by a �nite chain of straight
line segments. Since they are typically investigated by using a triangle de-
composition we agree that any triangle is a polygon.

De�nition A simple closed polygon is a �nite union of line segments

A1A2, A2A3, . . . , AnAn+1,

where A1, ..., An are distinct points in the plane, A1 = An+1 and the line
segments have no other points in common except their endpoints, each of
which lies on two segments.

The boundary of such a shape is a chain of straight line segments. The
positions where the chain is broken at are called vertices. The straight line
segment between two adjacent vertices is called a side/edge1 of the polygon.
The polygon is called convex if there are no concave interior angles, i.e. all
the interior angles are of measure less than 180 degree.

Theorem 9.1.1 The sum of interior angles of a polygon having n sides is

(n− 2)π.

Proof In case of convex polygons the result follows easily from the triangle
decomposition. Otherwise the statement can be proved by induction on the
number of concave interior angles.

1The name edge is typically used in graph theory.
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Figure 9.1: A polygon

The sum of the diagonals. Suppose that the polygon has n > 3 vertices.
If A is one of them then we have n - 1 vertices left to join with A. These give
two sides (adjacent vertices) and n - 3 diagonals. Therefore the sum of the
di�erent diagonals of the polygon having n vertices is

n(n− 3)

2

because each diagonal belongs to exactly two vertices.
The area of a polygon can be computed as the sum of the areas of triangles
constituting the polygon.

One of the most important special classes of polygons is formed by regular
polygons. They are automatically inscribed in a circle in the following way.
Let a circle be given and divide the perimeter into n equal parts by the points

P1, P2, . . . , Pn,

where n is geater or equal than 3. Each of the chords

P1P2, P2P3, . . . , PnP1

belong to the central angle 360/n degree in measure. They are the sides
of the regular n�gon inscribed in the given circle. The size depends on the
radius of the circle.



Chapter 10

Circles

De�nition Let a point O in the plane be given. If r is a positive real number
then the set of points having distance r from O is called a circle. The point O
is the center and r is the radius of the circle. A disk means the set of points
having distance at most r from the given point O. The circle is the boundary
of the disk with the same center and radius.

The most important problems related to a circle is the problem of tangent
lines and the problem of area.

10.1 Tangent lines

Let a line l be given. The de�nition of the circle suggests us to classify
the points of the line by the distance from the center of the circle. At �rst
suppose that l does not pass the center O and consider the line e passing
through O such that e is perpendicular to l. Using Pythagorean theorem it
can be easily seen that the foot F has the smallest distance from the center
among the points of l. Therefore if

• OF=r then the line has exactly one common point with the circle and
all the other points are external. In this case we say that the line is
tangent to the circle at the point F of tangency.

• OF < r then the line intersect the circle at exactly two points. In this
case we speak about a secant line.

• OF > r then l has no points in common with the circle.

The discussion of the lines passing through the center is obvious.
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De�nition The line l is tangent to a circle if they have exactly one common
point and all the other points on the line are external.

Remark Although the condition all the other points on the line are external
is redundant in case of tangent lines to a circle but not in general as the case
of conic sections (ellipse, hyperbola, parabola) shows. To construct tangent
lines in general one need taking the limit again. The tangent line is the limit
position of chords passing through a given point of the curve.

Excercise 10.1.1 Find the tangent lines to the parabola given by the graph
of the function

f(x) = x2.

Solution. Let x = 1 be �xed and consider the chord passing through the
points

(1, 1) and (x, x2).

The slope

m(x) =
x2 − 1

x− 1

is obviously depend on x. What happens if x tends to 1. Since the division
by zero is impossible we have to eliminate the term x - 1. Since

m(x) =
x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
= x+ 1

the slope at the limit position must be 2. The equation of the tangent line
at x=1 is

y − f(1) = 2 · (x− 1) ⇒ y = 2x− 1.

Theorem 10.1.2 If a line is tangent to a circle then it is perpendicular to
the radius drawn to the point of tangency.

The construction of the tangent line to a circle from a given external

point is based on Thales' theorem. Suppose that P is an external point and
F is the point of tangency to a circle with center O. Since PFO is a right
triangle the point F must be on the perimeter of the circle drawn from the
midpoint of the segment OP with radius OP/2.

Theorem 10.1.3 Let a circle with center O be given and suppose that P is
an external point. The tangent lines from P to the circle can be constructed
as follows:
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Figure 10.1: Tangent segments from an external point

• draw a circle with radius r = OP/2 around the midpoint of OP,

• the circle constructed in the �rst step meets the given circle at two
points F and G,

• FP and GP are tangent segments to the given circle.

To compute the common length of the tangent segments PF and PG we can
use Pythagorean theorem:

PF 2 + r2 = OP 2.

Corollary 10.1.4 The tangent segments passing through a given external
point are of the same length.

For two circles there are generally four distinct segments that are tangent
to both of them. If the centers are separated then we speak about internal
bitangent segments. Otherwise we have external bitangent segments. If the
circles

• are outside each other then we have two external and two internal
bitangent segments symmetrically about the line of the centers.

• are tangent to each other from outside then we have a common (in-
ternal) tangent line at the contact point and two external bitangent
segments symmetrically about the line of the centers.

• intersect each other then we have no inner bitangent segments or lines.

• are tangent to each other from inside then we have only a common
(external) tangent line at the contact point.

Excercise 10.1.5 How to construct common bitangent segments to two cir-
cles?

Solution. For the generic cases see �gures 10.2 and 10.3.
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Figure 10.2: External bitangent segments

Figure 10.3: Internal bitangent segments
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10.2 Tangential and cyclic quadrilaterals

Regular geometric objects can be always imaged together with their inscribed
or circumscribed circles. Another type of objects inscribed in a circle are the
so - called cyclic quadrilaterals. This means that the vertices are lying on
the same circle.

Theorem 10.2.1 The quadrilateral ABCD is a cyclic quadrilateral if and
only if the sums of the opposite angles are equal.

Proof The opposite angles of a cyclic quadrilateral are lying on complement
arcs which means that the sum of the corresponding central angles is 360
degree in measure. Therefore the sum of the opposite angles in a cyclic
quadrilateral must be 180 degree. Conversely, suppose that for example

6 A = 180− 6 C

and, consequently,

sin 6 A = sin(180− 6 C) = sin 6 C.

On the other hand the triangles DAB and BCD have a common side BD.
Using the extended sine rule

a

sinα
=

b

sin β
=

c

sin γ
= 2R

we have that the radius of the circumscribed circles of the triangles DAB
and BCD must be the same. The circumscribed circles pass simultaneously
through the points B and D. Therefore they are coincide or the (di�erent)
centers are situated symmetrically about the line of BD because of the com-
mon radius. This is impossible because the angles 6 A and 6 C can not be
simultaneously acute (or obtuse) angles.

De�nition A quadrilateral is called tangential if it has an inscribed circle
which touches all the sides of the quadrilateral.

Theorem 10.2.2 A convex quadrilateral is tangential if and only if the sum
of the opposite sides are equal.

If we have a tangential quadrilateral then the sides are constituted by
tangent line segments to the inscribed circle. If E, F, G and H denote the
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Figure 10.4: Cyclic and tangential quadrilaterals

touching points on the sides AB, BC, CD and DA respectively, then we have
that

AB + CD = (AE + EB) + (CG+GD) = (AH +BF ) + (FC +HD) =

= (AH +HD) + (BF + FC) = AD +BC

because corollary 10.1.4 says that the tangent line segments from an external
point to a given circle are of equal length. Therefore the sum of the lengths
of the opposite sides are equal. The common value is obviously the half of
the perimeter of the quadrilateral. The converse statement fails without the
condition of convexity as concave kites show.

10.3 The area of circles

To compute the area of a circle we use an approximation based on inscribed
regular n - gons. For the sake of simplicity suppose that the circle has
radius one. The vertices P1, P2, . . . , Pn of a regular n - gon inscribed in a
circle divides the perimeter into n equal parts. Therefore the area can be
computed as the sum of the areas of the congruent triangles

P1OP2, P2OP3, . . . , PnOP1,

i.e.

the area of a regular n - gon inscribed in the unti circle = n
sin 360

n

2
.

To simplify the procedure we consider the area

Ak = 2k
sin 360

2k

2
= 2k−1 sin

360

2k
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of 2k - gons. We are going to express the area

Ak+1 = 2k+1 sin 360
2k+1

2
= 2k sin

360

2k+1

in the (k+1)th step in terms of Ak. Since

360

2k
= 2

360

2k+1

we have by the additional rules that

cos
360

2k
= cos

(
2

360

2k+1

)
= cos2

360

2k+1
− sin2 360

2k+1
= 1− 2 sin2 360

2k+1

because of the trigonometric version of the Pythagorean theorem. Therefore

(
Ak+1

2k

)2

= sin2 360

2k+1
=

1− cos 360
2k

2
=

1−
√

1− sin2 360
2k

2
=

1−
√

1−
(
Ak

2k−1

)2
2

and, consequently,

Ak+1 = 2k

√√√√1−
√

1−
(
Ak

2k−1

)2
2

We have the following numerical values:

A2 = 22 sin 360
22

2
= 2,

A3 ≈ 2.8284, A4 ≈ 3.0615, A5 ≈ 3.1214, A6 = 3.1365 and so on.

Theoretically: A2 = 2,

A3 = 2
√

2 = 2
2√
2
, A4 = 2

2 · 2
√

2 ·
√

2 +
√

2
,

A5 = 2
2 · 2 · 2

√
2 ·
√

2 +
√

2 ·
√

2 +
√

2 +
√

2

and so on, see Viéte's formula 1.10 for 2/π.
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Chapter 11

Exercises

11.1 Exercises

Excercise 11.1.1 Let a circle with radius 2 be given. The distance between
the point P and the center of the circle is 4. Calculate the common length
of the tangent segments from P to the given circle and �nd the length of the
shorter arc along the circle between the contact points A and B.

Solution. The tangent segments have a common length

PA = PB =
√

42 − 22 =
√

12 = 2
√

3.

If α is the central angle belonging to the shorter arc between A and B then

sin
α

2
=

√
3

2
⇒ α = 120.

Therefore
120

360
=

the arc between A and B
2rπ

,

Figure 11.1: Exercise 11.1.1
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Figure 11.2: Exercise 11.1.2

i.e.

the arc between A and B =
4

3
π.

Excercise 11.1.2 The radius of a circle is 10, the tangent at the point C
of the circle has an inclination angle 30 degree to the chord CB. Otherwise
AC is the diameter of the circle. Calculate the area and the perimeter of the
triangle ABC.

Solution. Using Thales theorem ABC is a right triangle - the angle of 90
degree in measure is situated at B. The length of the hypothenuse AC is 20.
The angle at C is just 60 because the chord BC has an inclination angle 30
degree to the tangent at the point C. The legs are

20 cos 60 = 10 and 20 sin 60 = 10
√

3.

Therefore the area is

A = 50
√

3 and P = 20 + 10 + 10 ·
√

3.

Excercise 11.1.3 Let AB be a diameter of a circle of unit radius. Let C be
a point of the tangent to the circle at A for which AC is of length 2

√
3 long.

Calculate the area of the common part of the triangle ABC and the circle.

Solution. The angle at B can be easily calculated from the formula

tan β =
AC

AB
=

2
√

3

2
⇒ β = 60◦

Therefore the central angle lying on the same arc is of degree 120 in measure.
We have that

the area of the common part =
1

3
r2π + the area of OBD.
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Figure 11.3: Exercise 11.1.3

Figure 11.4: Exercise 11.1.4

The area of the triangle OBD can be computed as

r2 sin 60

2
,

i.e.

the area of the common part =
1

3
r2π +

√
3

4
r2.

Excercise 11.1.4 Draw a rhombus around a circle of area 100, so that the
rhombus has an angle 30 degree. Calculate the area of the rhombus.

Solution. The radius of the circle is 10/
√
π. If a is the common length of the

sides of the circumscribed rhombus then

sin 30 =
2r

a
⇒ a =

40√
π
.
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Figure 11.5: Exercise 11.1.5

Therefore the area of the rhombus is

A = a2 sin 30 =
800

π
.

Excercise 11.1.5 Construct an equilateral triangle above the diameter of a
circle with radius r. What is the area of the triangle lying outside the circle.

Solution. Let AB be the diameter of the circle and consider the common
points A' and B' on the perimeter of the circles. Since OAA' and OBB' are
equilateral triangles with sides of length r it follows that the area outside
from the circle is just

2r · 2r · sin 60

2
− 2

r · r · sin 60

2
− 1

6
r2π = r2

√
3− r2

√
3

2
− r2π

6
.

Excercise 11.1.6 A circle of unit radius touches the legs of a right angle.
What are the radii of the circles which touches the two legs of the right angle
and the given circle.

Solution (cf. exercise 8.1.4). Divide the problem into two parts. At �rst let
us concentrate on the circles touching the legs of a right angle. The center
of such a circle must be on the bisector of the angle. Let x be the distance
of the center from the vertex. Pythagorean theorem says that

x2 = r2x + r2x, i.e. x = rx
√

2,

where rx is the radius of the circle. It is labelled by the coordinate x. In case
of rx = 1 we have that x=

√
2. Two circles are tangent to each other from

outside if and only if the distance of the centers is the sum of the radii:

|x−
√

2| = rx + 1,
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Figure 11.6: Exercise 11.1.7

i.e.
x−
√

2 = rx + 1 or
√

2− x = rx + 1.

Therefore

rx =
1 +
√

2√
2− 1

or rx =

√
2− 1

1 +
√

2
.

Excercise 11.1.7 Draw a circle around the vertex of an angle of 120 degree
in measure. Calculate the radius of the circle which touches the given circle
inside, and the legs of the angle.

Solution. Let R be the radius of the circle drawn around the vertex O of an
angle of 120 degree in measure. If A and B denote the points of tangency
on the legs of the angle then AB=r, where r is the radius of the circle which
touches the given circle inside and the legs of the angle. From Pythagorean
theorem

R− r =
√
r2 +OA2,

where

OA = r tan 30 ⇒ OA2 =
r2

3
.

Therefore

R = r

(
1 +

2√
3

)
⇒ r =

R

1 + 2√
3

.

Excercise 11.1.8 Three sides of a triangle are 13, 14 and 15. What is the
radius of the circle whose center lies on the longest side of the triangle and
touches the other sides.

Solution. Consider the radii of the circle which are perpendicular to the sides
of lengths 13 and 14, respectively. The area of the triangle can be computed
as the sum

A =
13r

2
+

14r

2
.
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Figure 11.7: Exercise 11.1.8

Figure 11.8: Exercise 11.1.9

On the other hand

A =
√

42(42− 13)(42− 14)(42− 15)

because of Héron's formula. Finally

r = 2

√
42(42− 13)(42− 14)(42− 15)

27
.

Excercise 11.1.9 Let R and r denote the radii of two circles touching each
other outside and R > r. Calculate the length of the common internal tangent
between the common external tangents.

Solution. Because of the symmetry it is enough to compute the half of the
internal common tangent. If T is the point of tangency of the circles it follows
that

CA = CT = CB.

Therefore the length of the internal common tangent between the external
common tangents is just AB. On the other hand

AB2 + (R− r)2 = (R + r)2
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and, consequently,
AB = 2

√
Rr

Excercise 11.1.10 The length of the shortest diagonal of a regular 8�gon is
given: 10. What is the length of the sides and the area of the polygon.

Solution. Let P1, P2, . . . , P8 be the vertices of a regular 8�gon inscribed in a
circle with center O. The shortest diagonal connecting P1 and P3 belongs to
the central angle of 90 degree in measure because

6 P1OP3 = 2 · 6 P1OP2 = 2
360

8
= 90.

Using Pythagorean theorem it follows that

r2 + r2 = 100 ⇒ r =
√

50.

Therefore

P1P2 =
√
r2 + r2 − 2 · r · r · cos 45 =

√
50 + 50− 2 · 50 · 50 · cos 45

and the area is

A = 8
r · r · sin 45

2
.

Excercise 11.1.11 All sides of a symmetrical trapezoid touch a circle. The
parallel bases are 10 and 20.

• Calculate the angles of the trapezoid.

• Calculate the area of the trapezoid.

Excercise 11.1.12 What are the angles of a rhombus if its area is just twice
of the area of the inscribed circle?

Excercise 11.1.13 The length of the shortest diagonal of a regular 8�gon is
given: 20.

• What is the length of the sides?

• What is the area of the polygon?

Excercise 11.1.14 The length of the side of a regular 6�gon is given: 8.

• Calculate the angles of the polygon.
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Figure 11.9: Exercise 11.1.16

• What is the length of the shortest diagonal?

• What is the area of the polygon?

Excercise 11.1.15 Two circles of radius 5 intersect each other. The dis-
tance of the their centers is 8. Calculate the area of the common part of the
circles.

Excercise 11.1.16 A polygon of 12 sides can be inscribed into a circle. Six
of the sides have length

√
2, and the other six sides are equal to

√
24. What

is the radius of the circle.

Solution. Let O be the center of the circle and consider the vertices A, B
and C of the polygon such that

AB =
√

2 and BC =
√

24.

If α and β denote the central angles belonging to AB and BC, respectively
we have that

6α + 6β = 360

and, consequently
α + β = 60.

Therefore the triangle AOC is equilateral and AC = r. To �nish the solution
we compute the angle at B in the triangle ABC. Choose the point B' on the
circle opposite to B. Then B'ABC form a cyclic quadrilateral and the sum of
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the measures of the opposite angles must be 180 degree. The inscribed angle
theorem says that

6 AB′C = 30

and, consequently,

6 ABC = 180− 6 AB′C = 150.

Using the cosine rule we have that

AC2 = 24 + 2− 2 · 24 · 2 · cos 150 = r2.
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Chapter 12

Geometric transformations

12.1 Isometries

De�nition The point transformation ϕ : P → P ′ is called an isometry if it
preserves the distance between the points:

PQ = P ′Q′.

According to the case SSS of the congruence of triangles any isometry
preserves the angles and, by the characterization of parallelism, the paral-
lelism: parallel lines are transformed into parallel lines under any isometry.
In what follows we classify the possible cases in terms of the �xpoints.

Theorem 12.1.1 If an isometry has two �xpoints A and B then for any
point X of the line AB we have

X ′ = X.

Proof Since A'=A and B'=B we have that

AX = A′X ′ = AX ′ and BX = B′X ′ = BX ′.

Therefore X' must be on

• the circle around A with radius AX,

• the circle around B with radius BX.

Since A, B and X are collinear points these circles are tangent to each other
at the uniquely determined point X of tangency: X'=X.

145
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Corollary 12.1.2 If an isometry has three not collinear �xpoints then it
must be the identity.

Proof Suppose that A, B and C are not collinear �xpoints. Let D be an
arbitrary element in the plane and consider the parallel line to BC passing
through D. This line intersect both AB and AC at the points F and G,
respectively. By theorem 12.1.1 it follows that F'=F, G'=G and D'=D.

The case of two �xpoints gives the identical transformation or the re�ec-
tion about the line (axis) determined by the �xpoints A and B. In the sense
of theorem 12.1.1 for any element of the line AB we have that X'=X. What
about the points not in the axis of the re�ection? Let Y be one of them.
Since

Y A = Y ′A′ = Y ′A

and
Y B = Y ′B′ = Y ′B

it follows by the geometric characterization of the perpendicular bisector that
the line AB is just the perpendicular bisector of the segment YY'.
The case of exactly one �xpoint results in the notion of rotation about
the uniquely determined �xpoint O.
Translations are typical examples on isometries without �xpoints.

De�nition Two subsets in the plane are called congruent if there is an isom-
etry which transform them into each other.

According to the principle of permanence we should check that in case
of two congruent triangles ABC and DEF there is an isometry which maps
ABC into DEF. The basic steps of the construction can be formulated as
follows:

• If A=D then we use the identical transformation as the �rst. Other-
wise re�ect the triangle ABC about the perpendicular bisector of the
segment AD. This results in a triangle A'B'C', where A'=D

• If B'=E then we use the identical transformation as the second. Oth-
erwise re�ect the triangle A'B'C' about the perpendicular bisector of
the segment B'E. This results in a triangle A�B�C�, where B�=E. What
about A� ? To answer the question we should compare the distances
A'B' and A'E:

A′B′ = AB = DE
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because the triangles ABC and DEF are congruent. Using the �rst step

DE = A′E ⇒ A′B′ = A′E.

The geometric characterization of the perpendicular bisector implies
that A' is lying on the axis of the re�ection. Therefore

A′′ = (A′)′ = A′ = D.

• If C�=F then we use the identical transformation as the third. Oth-
erwise re�ect the triangle A�B�C� about the perpendicular bisector of
the segment C�F. This results in a triangle A� 'B� 'C� ', where C� '=F.
What about A�' and B�'?

We are going to prove that

A′′′ = A′′ = D and B′′′ = B′′ = E.

In order to check the �rst statement we should compare the distances A�C�
and A�F:

A′′C ′′ = A′C ′ = AC = DF

because the triangles ABC and DEF are congruent. Using the �rst and the
second steps

DF = A′F = A′′F ⇒ A′′C ′′ = A′′F.

The geometric characterization of the perpendicular bisector implies that A�
is lying on the axis of the re�ection. Therefore

A′′′ = (A′′)′ = A′′ = D.

The proof of the second statement is similar:

B′′C ′′ = B′C ′ = BC = EF

because the triangles ABC and DEF are congruent. Using the second step

EF = B′′F ⇒ B′′C ′′ = B′′F.

The geometric characterization of the perpendicular bisector implies that B�
is lying on the axis of the re�ection. Therefore

B′′′ = (B′′)′ = B′′ = E.
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Figure 12.1: The principle of permanence.

Remark The discussion of the principle of permanence shows that for any
pair of congruent triangles ABC and DEF there exists an isometry such that

A′ = D, B′ = E and C ′ = F.

Corollary 12.1.2 provides the unicity of such an isometry too. Therefore any
isometry is uniquely determined by the images of three not collinear points.
At the same time any isometry is the product of at most three re�ections
about lines. This gives a new starting point for the characterization: any
isometry is one of the following types

• re�ection about a line,

• the product of two re�ections about lines,

• the product of three re�ections about lines.

Excercise 12.1.3 Prove that the product of two re�ections about lines is a
rotation or a translation depending on whether the axes are concurrent or
parallel.

12.2 Similarities

De�nition The point transformation ξ : P → P ′ is called a similarity if it
preserves the ratio of distances between the points:

PQ : P ′Q′ = λ,

where the positive constant λ is called the similarity ratio.
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According to the case S'S'S' of the similarity of triangles any similarity
transformation preserves the angles and, by the characterization of paral-
lelism, the parallelism: parallel lines are transformed into parallel lines under
any similarity. In what follows we classify the possible cases in terms of the
�xpoints.

Remark Isometries are similarities with ratio 1.

Theorem 12.2.1 If a similarity is not an isometry then it has a uniquely
determined �xpoint.

Proof It is clear that if we have two di�erent �xpoints then the transforma-
tion is an isometry. Therefore the number of �xpoints is at most one. For
the proof of the existence we can refer to [5], where an elementary ruler con-
struction can be found for �nding the �xpoint of a similarity transformation
in the plane.

An important subclass of similarities is formed by the central similarities;
see the proof of theorem 4.2.1.

Corollary 12.2.2 Any similarity can be given as the product of a central
similarity and an isometry.

Proof Let ξ be a similarity with ratio λ. If λ = 1 then we have an isometry.
Otherwise the �xpoint C of ξ is uniquely determined in the sense of theorem
12.2.1. Therefore the product of ξ and the central similarity of scaling 1/λ
with respect to C gives an isometry ϕ.

Remark Since C must be the �xpoint of ϕ we have the following possible
cases: if ϕ is

• the identity then ξ is a central similarity,

• a re�ection about a line passing through C then ξ is a so - called stretch
re�ection.

• a rotation about C then ξ is a so - called stretch rotation or spiral
similarity.
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Chapter 13

Classical problems II

Everybody knows the famous geometric principle about the shortest way
between two points. In the following problems we can not use the principle
in a direct way because the straight line segments are forbidden by some
constraints. The indirect way is based on using geometric transformations to
create a new con�guration for the direct application. To keep all the metric
relationships the transformations must be isometries.

13.1 The problem of the bridge

Problem. Suppose that there are two villages A and B on di�erent banks of
a river with constant width. We can across the river by a bridge in such a
way that it is perpendicular to the banks. Find the best position for the legs
of the bridge by minimizing the sum of distances

AX +XY + Y B,

where X and Y denotes the position of the legs of the bridge.

Figure 13.1: The problem of the bridge
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Figure 13.2: The problem of the camel

Solution. Since the river is of constant width, the invariant term XY can
be omitted. The translation X 7→ X ′ = Y shows that the sub - trips AX
and YB correspond to a two - steps long polygonal chain from A' to B. The
straight line segment A'B indicates the optimal position for the legs of the
bridge.

13.2 The problem of the camel

Problem. Suppose that there are two villages A and B on the same bank of
an unswerving river. The distance between them is too large for a camel to
walk from A to B without drinking. Find the best position for the camel to
have a drink by minimizing the sum of distances

AX +XB,

where X denotes the position along the river.
Solution. Instead of a reduction by an invariant quantity (see the problem
of the bridge) we use an expansion by an invariant quantity to solve the
problem of the camel: minimize the sum

AA′ + A′X +XB,

where A' is the image of A under the re�ection about the line of the river.
The straight line segment A'B indicates the optimal position for the camel
to have a drink.

13.3 The Fermat point of a triangle

Problem. Find the point of the triangle ABC which minimizes the sum of
distances

AX +BX + CX.
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Figure 13.3: The Fermat point of a triangle

Solution. Consider a rotation about B with angle 60 degree into clockwise di-
rection. Since the triangle XBX' is equilateral the sub - trip BX can be substi-
tuted by XX'. On the other hand XC=X'C' because rotations are isometries.
Therefore every choice of X corresponds to a three - steps - long polygonal
chain from A to C'. Since the straight line segment AC' gives the minimal
length we have that the minimizer satis�es the conditions

6 AXB = 120◦

and
6 BXC = 6 BX ′C ′ = 120◦.

Figure 13.3 shows how to construct the minimizer by using equilateral trian-
gles lying on the sides of the triangle ABC. The method and the argumen-
tation is working as far as all the angles of the triangle ABC is less than 120
degree in measure.

Excercise 13.3.1 Explain why the method fails in case of an angle of mea-
sure greater or equal than 120 degree.

Remark In case of a triangle having an angle of measure greater or equal
than 120 degree the solution is just the vertex where the critical value of the
measure is attained or exceeded.

De�nition The point of the triangle ABC which minimizes the sum of dis-
tances

AX +BX + CX

is called the Fermat-point of the triangle.
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Chapter 14

Longitudes and latitudes

Problem. Find the distance between A and B on the surface of the Earth.
Solution. In geography the longitude and the latitude are used to determine
positions on the surface of the Earth. The longitude λ is a rotational angle to
specify the east-west position of the point relative to the Greenwich meridian
across Royal Observatory, Greenwich. The latitude ϕ is the inclination angle
relative to the plane of the Equator. In what follows we will use the signs +
and - instead of north and south or east and west. To simplify the formulas
in the calculation we suppose that the radius of the Earth is 1 unit.
First step Pythagorean theorem in the right triangle ABC gives the Eu-
clidean distance between A and B:

AB2 = AC2 + CB2.

Since AC is the vertical di�erence between the points,

AC2 = (AA′ −BB′)2 = (sinϕA − sinϕB)2.

Figure 14.1: Longitudes and latitudes I
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Figure 14.2: Longitudes and the latitudes II

To compute CB consider the projected segment A'B' in the equatorial plane:

OA′ = cosϕA, OB
′ = cosϕB and 6 A′OB′ = λB − λA.

Using the cosine rule we have that

A′B′2 = cos2 ϕA + cos2 ϕB − 2 cosϕA cosϕB cos(λB − λA) =

cos2 ϕA + cos2 ϕB − 2 cosϕA cosϕB(cosλB cosλA + sinλB sinλA) =(
cosϕA cosλA−cosϕB cosλB

)2

+

(
cosϕA sinλA−cosϕB sinλB

)2

= CB2.

Therefore

AB2 = (cosϕA cosλA − cosϕB cosλB)2 + (cosϕA sinλA − cosϕB sinλB)2+

(sinϕA − sinϕB)2.

Second step. Using AB we can compute the central angle ω in the triangle
AOB by the cosine rule

AB2 = 2− 2 cosω

because the radius of the Earth is chosen as a unit.
Third step. The distance between A and B on the surface of the Earth is
just the length of the shorter arc joining A and B along the circle cutted by
the plane AOB:

the length of the arc from A to B = ω (in radian).

Remark The distance in kilometers can be expressed from the formula

the length of the arc from A to B
R

= ω,

where R ≈ 6378.1 km.
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Excercise 14.0.2 Find the distances between World cities on the surface of
the Earth.

City Latitude Longitude
Aberdeen, Scotland 57 N 2 W
Budapest, Hungary 47 N 19 E

Cairo, Egypt 30 N 31 E
Dakar, Senegal 14 N 17 W

Edinburgh, Scotland 55 N 3 W
Frankfurt, Germany 50 N 8 E
Georgetown, Guyana 6 N 58 W
Hamburg, Germany 53 N 10 E
Irkutsk, Russia 52 N 104 E

Jakarta, Indonesia 6 S 106 E
Kingstone, Jamaica 17 N 76 W
La Paz, Bolivia 16 S 68 W
Madrid, Spain 40 N 3 W
Nagasaki, Japan 32 N N 122 E
Odessa, Ukraine 46 N 30 E
Paris, France 48 N 20 E

Rio de Janeiro, Brasil 22 S 43 W
Sydney, Australia 34 S 151 E

Tananarive, Madagascar 18 S 47 E
Veracruz, Mexico 19 N 96 W
Warsaw, Poland 52 N 21 E

Zürich, Switzerland 47 N 8 E
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Part II

Analytical Geometry
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Chapter 15

Rectangular Cartesian

Coordinates in a Plane

15.1 Coordinates in a plane

Let us draw in the plane two mutually perpendicular intersecting linesOx and
Oy which are termed coordinate axes (Fig. 15.1). The point of intersection
O of the two axes is called the origin of coordinates, or simply the origin. It
divides each of the axes into two semi-axes. One of the direction of the semi-
axes is conventionally called positive (indicated by an arrow in the drawing),
the other being negative.

Figure 15.1: The coordinate system

Any point A in a plane is speci�ed by a pair of numbers � called the
rectangular coordinates of the point A � the abscissa (x) and the ordinate
(y) according to the following rule.
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Figure 15.2: Coordinates of a point

Through the point A we draw a straight line parallel to the axis of
ordinates (Oy) to intersect the axis of abscissas (Ox) at some point Ax
(Fig. 15.2). The abscissa of the point A should be understood as a number
x whose absolute value is equal to the distance from O to Ax which is posi-
tive if Ax belong to the positive semi-axis and negative if Ax belongs to the
negative semi-axis. If the point Ax coincides with the origin, then we put x
equal to zero.

The ordinate (y) of the point A is determined in a similar way.
We shall use following notation: A(x, y) which means that the coordinates

of the point A are x (abscissa) and (y) (ordinate).
The coordinate axes separate the plane into four right angles termed

the quadrants as shown in Fig. 15.3. Within the limits of one quadrant
the signs of both coordinates remain unchanged. As we see in the �gure,
the quadrants are denoted and called the �rst, second, third, and fourth as
counted anticlockwise beginning with the quadrant in which both coordinates
are positive.

If a point lies on the x-axis (i.e. on the axis of abscissas) then its ordinate
y is equal to zero; if a point lies on the y-axis, (i.e. on the axis of ordinates),
then its abscissa x is zero. The abscissa and ordinate of the origin (i.e. of
the point O) are equal zero.

The plane on which the coordinates x and y are introduced by the above
method will be called the xy-plane. An arbitrary point in this with the
coordinates x and y will sometimes be denoted simply (x, y).

For an arbitrary pair of real numbers x and y there exists a unique point
A in the xy-plane for which x will be its abscissa and y its ordinate.

Indeed, suppose for de�niteness x > 0, and y < 0. Let us take on the
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Figure 15.3: Coordinates of a point

positive semi-axis x a point Ax at the distance x from the origin O, and a
point Ay on the negative semi-axis y at the distance |y| from O. We then
draw through the points Ax and Ay straight lines parallel to the axes y and
x, respectively (Fig. 15.4). These lines will intersect at a point A whose
abscissa is obviously x, and ordinate is y. In other case (x < 0, y > 0; x > 0,
y > 0 and x < 0, y < 0) the proof is analogous.

Figure 15.4: Example of coordinates

Let us consider several important cases of analytical representation of
domains on the xy-plane with the aid of inequalities. A set of points of the
xy-plane for which x > a is a half-plane bounded by a straight line passing
through the point (a, 0) parallel to the axis of ordinates (Fig. 15.5). A set
of points for which a < x < b represents the intersection (i.e. the common
portion) of the half-planes speci�ed by the inequalities a < x and x < b.
Thus, this set is a band between the straight lines parallel to the y-axis and
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Figure 15.5: Example of a half plane and a strip

Figure 15.6: Example of a rectangle

passing through the points (a, 0) and (b, 0) (Fig. 15.5). A set of points for
which a < x < b, c < y < d is a rectangle with vertices at points for which
a < x < b, c < y < d is a rectangle with vertices at points (a, c) (a, d), (b, c),
(b, d). (Fig. 15.6)

In conclusion, let us solve the following problem: Find the area of a
triangle with vertices at points A1(x1, y1), A2(x2, y2), A3(x3, y3). Let the tri-
angle be located relative to the coordinate system as is shown in Fig. 15.7.
In this position its area is equal to the di�erence between the area trapez-
ium B1A1A3B3 and the sum of the areas of the trapezia B1A1A2B2 and
B2A2A3B3.

The bases of the trapezium B1A1A3B3 are equal to y1 and y3, its altitude
being equal to x3 − x1. Therefore, the area of the trapezium

S(B1A1A3B3) =
1

2
(y3 + y1)(x3 − x1).
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Figure 15.7: Area of a triangle

The areas of two other trapezia are found analogously:

S(B1A1A2B2) =
1

2
(y2 + y1)(x2 − x1),

S(B2A2A3B3) =
1

2
(y3 + y2)(x3 − x2).

The area of the triangle A1A2A3:

S(A1A2A3) =
1

2
(y3 + y1)(x3 − x1)

− 1

2
(y2 + y1)(x2 − x1)−

1

2
(y3 + y2)(x3 − x2)

=
1

2
(x2y3 − y3x1 + x1y2 − y2x3 + x3y1 − y1x2).

This formula can be rewritten in a convenient form:

S(A1A2A3) =
1

2
{(y3 − y1)(x2 − x1)− (y2 − y1)(x3 − x1)}.

Though the above formula for computing the area of the triangle has
been derived for a particular location of the triangle relative to the coordinate
system, it yields a correct result (up to a sign) for any position of the triangle.
This will be proved later on (in Section XXXX).

15.2 Exercises

1. What is the location of the points of the xy-plane for which (a) |x| = a,
(b) |x| = |y|?
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2. What is the location of the points of the xy-plane for which (a) |x| < a,
(b) |x| < a, |y| < b?

3. Find the coordinates of a point symmetrical to the point A(x, y) about
the x-axis (y-axis, the origin).

4. Find the coordinates of a point symmetrical to the point A(x, y) about
the bisector of the �rst (second) quadrant.

5. How will the coordinates of the point A(x, y) change if the y-axis is
taken for the x-axis, and vice versa?

6. How will the coordinates of the point A(x, y) change if the origin is
displaced into the point A0(x0, y0) without changing the directions of the
coordinate axes?

7. Find the coordinates of the mid-points of the sides of a square taking
its diagonals for the coordinate axes.

8. It is known that three points (x1, y1), (x2, y2), (x3, y3) are collinear.
How can one �nd out which of these points is situated between the other
two?

15.3 The distance between points

Let there be given on the xy-plane two points: A1 with the coordinates x1,
y1 and A2 with the coordinates x2, y2. It is required to express the distance
between the points A1 and A2 in terms of their coordinates.

Suppose x1 6= x2 and y1 6= y2. Through the points A1 and A2 we draw
straight lines parallel to the coordinate axes (Fig. 15.8). The distance be-
tween the points A and A1 is equal to |y1−y2|, and the distance between the
points A and A2 is equal to |x1− x2|. Applying the Pythagorean theorem to
the right-angled triangle A1AA2, we get

(x1 − x2)2 + (y1 − y2)2 = d2, (∗)

Though the formula (∗) for determining the distance between points has
been derived by us proceeding from the assumption that x1 6= x2, y1 6= y2, it
remains true for other cases as well. Indeed, for x1 = x2, y1 6= y2 d is equal
to |y1 − y2| (Fig. 15.9). The same result is obtained using the formula (∗).
For x1 6= x2, y1 = y2 we get a similar result. If x1 = x2, y1 = y2 the points
A1 and A2 coincide and the formula (∗) yields d = 0.

As an exercise, let us �nd the coordinates of the centre of a circle circum-
scribed about a triangle with the vertices (x1, y1), (x2, y2), and (x3, y3).

Let (x, y), be the centre of the circumcircle. Since it is equidistant from
the vertices of the triangle, we derive the following equations for the required
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Figure 15.8: Distance of two points

Figure 15.9: Distance of two special points
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coordinates of the centre of the circle (x and y). Thus, we have

(x− x1)2 + (y − y1)2 = (x− x2)2 + (y − y2)2,

(x− x1)2 + (y − y1)2 = (x− x3)2 + (y − y3)2,

or after obvious transformations

2(x2 − x1)x+ 2(y2 − y1)y = x22 + y22 − x21 − y21,

2(x3 − x1)x+ 2(y3 − y1)y = x23 + y23 − x21 − y21.

Thus, we have a system of two linear equations for determining the un-
knowns x and y.

15.4 Exercises

1. Find on the x-axis the coordinates of a point equidistant from the two
given points A(x1, y1), and B(x2, y2). Consider the case A(0, a), B(b, 0).

2. Given the coordinates of two vertices A and B of an equilateral triangle
ABC. How to �nd the coordinates of the third vertex? Consider the case
A(0, a), B(a, 0).

3. Given the coordinates of two adjacent vertices A and B of a square
ABCD. How are the coordinates of the remaining vertices found? Consider
the case A(a, 0), B(0, b).

4. What condition must be satis�ed by the coordinates of the vertices of
a triangle ABC so as to obtain a right-angled triangle with a right angle at
the vertex C?

5. What condition must be satis�ed by the coordinates of the vertices of
a triangle ABC so that the angle A exceeds the angle B?

6. A quadrilateral ABCD is speci�ed by the coordinates of its vertices.
How to �nd out whether or not is it inscribed in a circle?

7. Prove that for any real a, a1, a2, b, b1, b2 there holds the following
inequality√

(a1 − a)2 + (b1 − b)2 +
√

(a2 − a)2 + (b2 − b)2 ≥
√

(a1 − a2)2 + (b1 − b2)2.

To what geometrical fact does it correspond?



15.5. DIVIDING A LINE SEGMENT IN A GIVEN RATIO 169

Figure 15.10: Dividing a line segment

15.5 Dividing a line segment in a given ratio

Let there be given two di�erent points on the xy-plane: A1(x1, y1) and
A2(x2, y2). Find the coordinates x and y of the point A which divides the
segment A1A2 in the ratio λ1 : λ2.

Suppose the segment A1A2 is not parallel to the x-axis. Projecting the
points A1, A, A2 on the y-axis, we have (Fig. 15.10)

A1A

AA2

=
Ā1Ā

ĀĀ2

=
λ1
λ2
.

Since the points Ā1, Ā2, Ā have the same ordinates as the points A1, A2,
A, respectively, we get

Ā1Ā = |y1 − y|, ĀĀ2 = |y − y2|.

Consequently,
|y1 − y|
|y − y2|

=
λ1
λ2
.

Since the point Ā lines between Ā1 and Ā2, y1 − y and y− y2 have the same
sign.

Therefore
|y1 − y|
|y − y2|

=
y1 − y
y − y2

=
λ1
λ2
.

Whence we �nd

y =
λ2y1 + λ1y2
λ1 + λ2

. (∗)
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If the segment A1A2 is parallel to the x-axis, then

y1 = y2 = y.

The same result is yielded by the formula (∗) which is thus true any
positions of the points A1 and A2.

The abscissa of the point A is found analogously. For it we get the formula

x =
λ2x1 + λ1x2
λ1 + λ2

.

We put λ1
λ1+λ2

= t. Then λ2
λ1+λ2

= 1− t.
Consequently, the coordinates of any point C of a segment with the end-

points A(x1, y1) and B(x2, y2) may be represented at follows

x = (1− t)x1 + tx2, y = (1− t)y1 + ty2, 0 ≤ t ≤ 1.

Let us �nd location of points C(x, y) for t < 0 and t > 1. To do this in
case of t < 0 we solve our formulas with respect to x1, y1. We get

x1 =
1 · x+ (−t)x2

1− t
,

y1 =
1 · y + (−t)y2

1− t
.

Hence, it is clear that the point A(x1, y1) is situated on the line segment CB
and divides this segment in the ratio (−t) : 1. Thus, for t < 0 our formulas
yield the coordinates of the point lying on the extension of the segment AB
beyond the point A. It is proved in a similar way that for t > 1 the formulas
yield the coordinates of the point located on the extension of the segment
AB beyond the point B.

As an exercise, let us prove Ceva's theorem from elementary geometry.
It states: It the sides of a triangle are divided in the ratio a : b, c : a,
b : c, taken in order of moving round the triangle (see Fig. 15.11), then the
segments joining the vertices of the triangle to the points of division of the
opposite sides intersect in on one point.

Let A(x1, y1), B(x2, y2), and C(x3, y3) be the vertices of the triangle and
Ā, B̄, C̄ the points of division of the opposite sides (Fig. 15.11). The coor-
dinates of the point Ā are:

x =
bx2 + cx3
b+ c

, y =
by2 + cy3
b+ c

,
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Figure 15.11: Ceva's theorem

Let us divide the line segment AĀ in the ratio (b+c) : a. Then the coordinates
of the point of division will be

x =
ax1 + bx2 + cx3

a+ b+ c
,

y =
ay1 + by2 + cy3

a+ b+ c
.

If the segment BB̄ is divided in the ratio (a+ c) : b, then we get the same
coordinates of the point of division. The same coordinates are obtained when
dividing the segment CC̄ in the ratio (a + b) : c. Hence, the segments AĀ,
BB̄, and CC̄ have a point in common, which was required to be proved.

Let us note here that the theorems of elementary geometry on intersecting
medians, bisectors, and altitudes in the triangle are particular cases of Ceva's
theorem.

15.6 Exercises

1. Given the coordinates of three vertices of a parallelogram: (x1, y1),
(x2, y2), and (x3, y3). Find the coordinates of the fourth vertex and the
centroid.

2. Given the coordinates of the vertices of a triangle: (x1, y1), (x2, y2),
and (x3, y3). Find the coordinates of the point of intersection of the medians.

3. Given the coordinates of the mid-points of the sides of a triangle
(x1, y1), (x2, y2), and (x3, y3). Find the coordinates of this vertices.
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4. Given a triangle with the vertices (x1, y1), (x2, y2), and (x3, y3). Find
the coordinates of the vertices a homothetic triangle with the ratio of simi-
larity λ and the centre of similitude at point (x0, y0).

5. Point A is said to divide the line segment A1A2 externally in the ratio
λ1 : λ2 if this point lies on a straight line joining the points A1 and A2 outside
the segment A1A2 and the ratio of its distances from the points A1 and A2

is equal to λ1 : λ2. Show that the coordinates of the point A are expressed
in terms of the coordinates (x1, y1), (x2, y2) of the points A1 and A2 by the
formulas

x =
λ2x1 − λ1x2
λ2 − λ1

, y =
λ2y1 − λ1y2
λ2 − λ1

.

6. Two line segments are speci�ed by the coordinates of their end-points.
How can we �nd out, without using a drawing, whether the segments intersect
or not?

7. The centre of gravity of two masses µ1 and µ2 situated at points
A1(x1, y1) and A2(x2, y2) is de�ned as a point A which divides the segment
A1A2 in the ratio µ2 : µ1.

Thus, its coordinates are:

x =
µ1x1 + µ2x2
µ1 + µ2

, y =
µ1y1 + µ2y2
µ1 + µ2

.

The centre of gravity of n masses µi situated at points Ai is determined by
induction. Indeed, if A′n is the centre of gravity of the �rst n−1 masses, then
the centre of gravity of all n masses is determined as the centre of gravity of
two masses: µn located at point An, and µ1 + · · · + µn−1, situated at point
A′n. We then derive the formulas for the coordinates of the centre of gravity
of the masses µi situated at points Ai(xi, yi):

x =
µ1x1 + · · ·+ µnxn
µ1 + · · ·+ µn

, y =
µ1y1 + · · ·+ µnyn
µ1 + · · ·+ µn

15.7 The equation of a circle

Let there be given a curve on the xy-plane (Fig. 15.12). The equation
ϕ(x, y) = 0 is called the equation of a curve in the implicit form if it is
satis�ed by the coordinates (x, y) of any point of this curve. Any pair of
numbers x, y, satisfying the equation ϕ(x, y) = 0 represents the coordinates
of a point on the curve. As is obvious, a curve is de�ned by its equation,
therefore we may speak of representing a curve by its equation.

In analytic geometry two problems are often considered: (1) given the
geometrical properties of a curve, form its equation: (2) given the equation
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Figure 15.12: Equation of a curve

Figure 15.13: Equation of a circle

of a curve, �nd out its geometrical properties. Let us consider these problems
as applied to the circle which is the simplest curve.

Suppose that A0(x0, y0) is an arbitrary point of the xy-plane, and R is
any positive number. Let us form the equation of a circle with centre A0 and
radius R (Fig. 15.13).

Let A(x, y) be an arbitrary point of the circle. Its distance from the centre
A0 is equal to R. According to Section 15.3, the square of the distance of the
point A from A0 is equal to (x − x0)2 + (y − y0)2. Thus, the coordinates x,
y of any point A of the circle satisfy the equation

(x− x0)2 + (y − y0)2 −R2 = 0. (∗)

Conversely, any point A whose coordinates satisfy the equation (∗) be-
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longs to the circle, since its distance from A0 is equal to R.
In conformity with the above de�nition, the equation (∗) is an equation

of a circle with centre A0 and radius R.
We now consider the second problem for the curve given by the equation

x2 + y2 + 2ax+ 2by + c = 0 (a2 + b2 − c > 0).

This equation can be rewritten in the following equivalent form:

(x+ a)2 + (y + b)2 − (
√
a2 + b2 − c )2 = 0.

Whence it is seen than any point (x, y) of the curve is found at one and the
same distance equal to

√
a2 + b2 − c from the point (−a,−b), and, hence, the

curve is a circle with centre (−a,−b) and radius
√
a2 + b2 − c.

Let us consider the following problem as an example illustrating the ap-
plication of the method of analytic geometry: Find the locus of points in a
plane the ratio of whose distances from two given points A and B is constant
and is equal to k 6= 1. (The locus is de�ned as a �gure which consists of
all the points possessing the given geometrical property. In the case under
consideration we speak of a set of all the points in the plane for which the
ratio of the distances from the two points A and B is constant).

Suppose that 2a is the distance between the points A and B. We then
introduce a rectangular Cartesian coordinate system on the plane taking the
straight line AB for the x-axis and the midpoint of the segment AB for the
origin. Let, for de�niteness, the point A be situated on the positive semi-
axis x. The coordinates of the point A will then be: x = a, y = 0, and the
coordinates of the point B will be: x = −a, y = 0. Let (x, y) be an arbitrary
point of the locus. The squares of its distances from the points A and B are
respectively equal to (x − a)2 + y2 and (x + a)2 + y2. The equation of the
locus is

(x− a)2 + y2

(x+ a)2 + y2
= k2,

or

x2 + y2 +
2(k2 + 1)

k2 − 1
ax+ a2 = 0.

The locus represents a circle (called Apollonius' circle).

15.8 Exercises
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1. What peculiarities in the position of the circle

x2 + y2 + 2ax+ 2by + c = 0 (a2 + b2 − c > 0)

relative to the coordinate system take place if

(1) a = 0; (2) b = 0; (3) c = 0;

(4) a = 0, b = 0; (5) a = 0, c = 0; (6) b = 0, c = 0?

2. Show that if we substitute in the left-hand member of the equation of
a circle the coordinates of any point lying outside the circle, then the square
of the length of a tangent drawn from this point to the circle is obtained.

3. The power of a point A with reference to a circle is de�ned as the
product of the segments of a secant drawn through the point A taken with
plus for outside points and with minus for inside points. Show that the left-
hand member of the equation of a circle x2 + y2 + 2ax + 2by + c = 0 gives
the power of this point with reference to a circle when the coordinates of an
arbitrary point are substituted in it.

4. Form the equation of the locus of points of the xy-plane the sum of
whose distances from two given points F1(c, 0) and F2(−c, 0) is constant and
is equal to 2a (the ellipse). Show that the equation is reduced to the form
x2

a2
+ y2

b2
= 1, where b2 = a2 − c2.

5. Form the equation of the locus of points of the xy-plane the di�erence
of whose distances from two given points F1(c, 0) and F2(−c, 0) is constant
and is equal to 2a (the hyperbola). Show that the equation is reduced to the
form x2

a2
+ y2

b2
= 1 where b2 = c2 − a2.

6. Form the equation of the locus of points of the xy-plane which are
equidistant from the point F (0, p) and the x-axis (the parabola).

15.9 The equation of a curve represented by

parameters

Suppose a point A moves along a curve, and by the time t its coordinates
are: x = ϕ(t) and y = ϕ(t). A system of equations

x = ϕ(t), y = ϕ(t),

specifying the coordinates of an arbitrary point on the curve as functions the
parameter t is called the equation of a curve in parametric form.

The parameter t is not necessarily time, it may be any other quantity
characterizing the position of a point on the curve.
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Figure 15.14: Distance of two points

Let us now form the equation of a circle in parametric form.
Suppose the centre of a circle is situated at the origin, and the radius is

equal to R. We shall characterize the position of point A on the circle by the
angle α formed by the radius OA with the positive semi-axis x (Fig. 15.14).
As is obvious, the coordinates of the point A are equal to R cosα, R sinα,
and, consequently, the equation of the circle has such a form:

x = R cosα, y = R sinα.

Having an equation of a curve in parametric form:

x = ϕ(t), y = ϕ(t), (∗)

we can obtain its equation in implicit form:

f(x, y) = 0.

To this e�ect it is su�cient to eliminate the parameter t from the equations
(∗), �nding one equation and substituting into the other, or using another
method.

For instance, to get the equation of a circle represented by equations in
parametric form (i.e. implicitly) it is su�cient to square both equalities and
add then termwise. We then obtain the familiar equation x2 + y2 = R2.

The elimination of the parameter from the equations of a curve repre-
sented parametrically not always yields an equation in implicit form in the
sense of the above de�nition. It many turn out that it is satis�ed by the
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points not belonging to the curve. In this connection let us consider two
examples.

Suppose a curve y is given by the equations in parametric form

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

Dividing these equations by a and b, respectively, squaring and adding them
termwise, we get the equation

x2

a2
+
y2

b2
= 1.

This equation is obviously satis�ed by all the points belonging to the curve
y. Conversely, if the point (x, y) satis�es this equation, then there can be
found an angle t for which x/a = cos t, y/b = sin t, and, consequently, any
point of the plane which satis�es this equation, belongs to the curve y.

Let now a curve y be represented by the following equations

x = cosh t, y = b sinh t, −∞ < t+∞,

where
cosh t = (et + e−t)/2, sinh t = (et − e−t)/2.

Dividing these equations by a and b, respectively, and then squaring them
and subtracting termwise, we get the equation

x2

a2
− y2

b2
= 1.

The points of the curve y satisfy this equation. But not any point which
satis�es the equation belongs to y. Let us, for instance, consider the point
(−a, 0). We see that it satis�es the equation, but does not belong to the
curve, since on the curve ya cosh t 6= −a.

Sometimes the equation of a curve represented in implicit form is under-
stood in a wider way. One does not require that any point satisfying the
equation, belongs to the curve.

15.10 Exercises

1. Show that the following equations in parametric form

x = R cos t+ a, y = R sin t+ b
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Figure 15.15: Exercise 3

represent a circle of radius R with centre at point (a, b).
2. Form the equation of a curve described by a point on the line segment

of length a when the end-points of the segment slide along the coordinate
axes (the segment is divided by this point in the ratio λ : µ). Take the angle
formed by the segment with the x-axis for the parameter. What is the shape
of the curve if λ : µ = 1?

3. A triangle slides along the coordinate axes with two of its vertices.
Form the equation of the curve described by the third vertex (Fig. 15.15).

4. Form the equation of the curve described by a point on a circle of
radius R which rolls along the x-axis. For the parameter take the path s
covered by the centre of the circle and suppose that at the initial moment
(s = 0) point A coincides with the origin.

5. A curve is given by the equation

ax2 + bxy + cy2 + dx+ ey = 0.

Show that, by introducing the parameter t = y/x, we can obtain the
following equations of this curve in parametric form:

x = − d+ et

a+ bt+ ct2
,

y = − dt+ et2

a+ bt+ ct2
.



Chapter 16

The Straight Line

16.1 The general equation of a straight line

The straight line is the simplest and most widely used line.
We shall now show that any straight line has an equation of the form

ax+ by + c = 0, (∗)

where a, b, c are constant. And conversely, if a and b are noth both zero,
then there exists a straight line for which (∗) is its equation.

Let A1(a1, b1) and A2(a2, b2) be two di�erent points situated symmetri-
cally about a given straight line (Fig. 16.1). Then any point A(x, y) on this
line is equidistant from the points A1 and A2. And conversely, any point A
which is equidistant from A1 and A2 belongs to the straight line. Hence, the
equation of a straight line is

(x− a1)2 + (y − b1)2 = (x− a2)2 + (y − b2)2.

Transposing all terms of the equation to the left-hand side, removing the
squared parentheses, and carrying out obvious simpli�cations, we get

2(a2 − a1)x+ 2(b2 − b1)y + (a21 + b21 − a22 − b22) = 0.

Thus, the �rst part of the statement is proved.
We now shall prove the second part. Let B1 and B2 be two di�erent

points of the xy-plane whose coordinates satisfy the equation (∗). Suppose

a1x+ b1y + c1 = 0

is the equation of the straight line B1B2. The system of equations

ax+ by + c = 0,

a1x+ b1y + c1 = 0

}
(∗∗)

179



180 CHAPTER 16. THE STRAIGHT LINE

Figure 16.1: Equation of a line

is compatible, it is a fortiori satis�ed by the coordinates of the point B1, as
well as of B2.

Since the points B1, and B2 are di�erent, they di�er in at least one
coordinate, say y1 6= y2. Multiplying the �rst equation of (∗∗) by a1 and the
second one by a, and subtracting termwise, we get

(ba1 − ab1)y + (ca1 − ac1) = 0.

This equation as a corollary of the equations (∗∗) is satis�ed when y = y1
and y = y2. But it is possible only if

ba1 − ab1 = 0, ca1 − ac1 = 0.

Hence it follows that
a

a1
=

b

b1
=

c

c1
,

which means that the equations (∗∗) are equivalent. The second part of the
statement is also proved.

As was shown in Section 15.5, the points of a straight line passing through
(x1, y1) and (x2, y2) allow the following representation

x = (1− t)x1 + tx2, y = (1− t)y1 + ty2.

Whence it follows that any straight line allows a parametric representation
by equations of the form

x = at+ b, y = ct+ d, −∞ < t <∞.
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Figure 16.2: x�parallel

Conversely, any such system of equations may be considered as equations of
a straight line in parametric form if a and c are not both equal to zero. This
straight line is represented by the equation in implicit form

(x− b)c− (y − d)a = 0.

16.2 Particular cases of the equation of a line

Let us �nd out peculiarities which happen in the location of a straight line
relative to the coordinate system if its equation ax + by + c = 0 is of a
particular form.

1. a = 0. In this case the equation of a straight line can be rewritten as
follows

y = −c
b
.

Thus, all points belonging to the straight line have one and the same ordinate
(−c/b), and, consequently, the line is parallel to the x-axis (Fig. 16.2). In
particular, if c = 0, then the straight line coincides with the x-axis.

2. b = 0. This case is considered in a similar way. The straight line is
parallel to the y-axis (Fig. 16.3) and coincides with it if c is also zero.

3. c = 0. The straight line passes through the origin, since the coordinates
of the latter (0, 0) satisfy the equation of the straight line (Fig. 16.4).

4. Suppose all the coe�cients of the equation of the straight line are
non-zero (i.e. the line does not pass through the origin and is not parallel
to the coordinate axes). Then, multiplying the equation by 1/c and putting
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Figure 16.3: y�parallel

Figure 16.4: A line through the origin
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Figure 16.5: x and y intersection

−c/a = α, −c/b = β, we reduce it to the form

x

α
+
y

β
= 1. (∗)

The coe�cients of the equation of a straight line in such a form (which is
called the intercept form of the equation of a straight line) have a simple ge-
ometrical meaning: α and β are equal (up to a sign) to the lengths of the line
segments intercepted by the straight line on the coordinate axes (Fig. 16.5).
Indeed, the straight line intersects both the x-axis (y = 0) at point (α, 0),
and the y-axis (x = 0) at point (0, β).

16.3 Exercises

1. Under what condition does the straight line

ax+ by + c = 0

intersect the positive semi-axis x (the negative semi-axis x)?
2. Under what condition does the straight line

ax+ by + c = 0

not intersect the �rst quadrant?
3. Show that the straight lines given by the equations

ax+ by + c = 0, ax− by + c = 0, b 6= 0,



184 CHAPTER 16. THE STRAIGHT LINE

are situated symmetrically about the x-axis.
4. Show that the straight lines speci�ed by the equations

ax+ by + c = 0; ax+ by − c = 0,

are arranged symmetrically about the origin.
5. Given a pencil of lines

ax+ by + c+ λ(a1x+ b1y + c1) = 0.

Find out for what value of the parameter λ is a line of the pencil parallel to
the x-axis (y-axis); for what value of λ does the line pass through the origin?

6. Under what condition does the straight line

ax+ by + c = 0

bound, together with the coordinate axes, an isosceles triangle?
7. Show that the area of the triangle bounded by the straight line

ax+ by + c = 0 (a, b.c 6= 0)

and the coordinate axes is

S =
1

2

c2

|ab|
.

8. Find the tangent lines to the circle

x2 + y2 + 2ax+ 2by = 0,

which are parallel to the coordinate axes.

16.4 The angle between two straight lines

When moving along any straight line not parallel to the y-axis x increases in
one direction and decreases in the other. The direction in which x increases
will be called positive.

Suppose we are given two straight lines g1 and g2 in the xy-plane which
are not parallel to the y-axis. The angle θ(g1, g2) formed by the line g2 with
the line g1 is de�ned as an angle, less than π by absolute value, through which
the line g1 must be turned so that the positive direction on it is brought in
coincidence with the positive direction on g2. This angle is considered to be
positive if the line g1 is turned in the same direction in which the positive
semi-axis x is turned through the angle π/2 until it coincides with the positive
semi-axis y (Fig. 16.6).

The angle between the straight lines possesses the following obvious prop-
erties :
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Figure 16.6: Angle of two lines

(1) θ(g1, g2) = θ(g2, g1);

(2) θ(g1, g2) = 0 when and only when lines are parallel or coincide;

(3) θ(g3, g1) = θ(g3, g2) + θ(g2, g1).

Let
ax+ by + c = 0

be a straight line not parallel to the y-axis (b 6= 0). Multiplying the equation
of the is line by 1/b and putting −a/b = k, −c/b = `, we reduce it to the
form

y = kx+ `. (∗)
The coe�cients of the equation of a straight line in this form have a

simple geometrical meaning:
k is the tangent of the angle α formed by straight line with the x-axis ;
` is the line segment (up to a sign) intercepted by the straight line on the

y-axis.
Indeed, let A1(x1, y1) and A2(x2, y2) be two points on the straight line

(Fig. 16.7). Then

tanα =
y2 − y1
x2 − x1

=
(kx2 + `)− (kx1 + `)

x2 − x1
= k.

The y-axis (x = 0) is obviously intersected by the line at point (0, `).
Let there be given in the xy-plane two straight lines:

y = k1x+ `1,

y = k2x+ `2.
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Figure 16.7: The slope of a line

Let us �nd the angle θ formed by the second line with the �rst one. Denoting
by α1 and α2 the angles formed by the straight lines with the x-axis, by virtue
of property (3) we get

θ = α2 − α1.

Since the angular coe�cients k1 = tanα1, k2 = tanα2, we get

tan θ =
k2 − k1
1 + k1k2

.

Whence θ is determined, since |θ| < π.

16.5 Exercises

1. Show that the straight lines ax + by + c = 0 and bx − ay + c′ = 0
intersect at right angles.

2. What angle is formed with the x-axis by the straight line

y = x cotα, if − π

2
< α0?

3. Form the equations of the sides of a right-angled triangle whose side
is equal to 1, taking one of the sides and the altitude for the coordinate axes.

4. Find the interior angles of he triangle bounded by the straight lines
x+ 2y = 0, 2x+ y = 0, and x+ y = 1.

5. Under what condition for the straight lines ax+by = 0 and a1x+b1y =
0 is the x-axis the bisector of the angles formed by them?
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6. Derive the formula tan θ = c
a
for the angle θ formed by the straight

line x = at+ b, y = ct+ d with the x-axis.
7. Find the angle between the straight lines represented by the equations

in parametric form:

x = a1t+ b1,

y = a2t+ b2;

}
x = c1t+ d1,

y = c2t+ d2.

}

8. Show taht the quadrilateral bounded by the straight lines

±ax± by + c = 0 (a, b, c 6= 0),

is a rhombus and the coordinate axes are its diagonals.

16.6 The parallelism and perpendicularity of

lines

Suppose we have in the xy-plane two straight lines given by the equations

a1x+ b1y + c1 = 0,

a2x+ b2y + c2 = 0.

Let us �nd out what condition must be satis�ed by the coe�cients of the
equations of the straight lines for these lines for these lines to be (a) parallel
to each other, (b) mutually perpendicular.

Assume that neither of the straight lines is parallel to the y-axis. Then
their equations may be written in the form

y = k1x+ `1, y = k2x+ `2,

where
k1 = −a1

b1
, k2 = −a2

b2
.

Taking into account the expression for the angle between straight lines, we
get the parallelism condition of two straight lines :

k1 − k2 = 0,

or
a1b2 − a2b1 = 0. (∗)
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The perpendicularity condition of straight lines :

1 + k1k2 = 0,

or
a1a2 + b1b2 = 0. (∗)

Thought the conditions (∗) and (∗∗) are obtained in the assumption that
neither of the straight lines is parallel to the y-axis, they remain true even if
this condition is violated.

Let for instance, the �rst straight line be parallel to the y-axis. This
means that, b1 = 0. If the second line is parallel to the �rst one, then it is
also parallel to the y-axis, and, consequently, b2 = 0. The condition (∗) is
obviously ful�lled. If the second line is perpendicular to the �rst one, then it
is parallel to the x-axis and, consequently, a2 = 0. in this case the condition
(∗∗) is obviously ful�lled.

Let us now show that if the condition (∗) is ful�lled for the straight lines,
then they are either parallel, or coincide.

Suppose, b1 6= 0. Then it follows from the condition (∗) that b2 6= 0, since
if b2 = 0, then a2 is also equal to zero which is impossible. In this event the
condition (∗) may be written in the following way

−a1
b1

= −a2
b2
, or k1 = k2,

which expresses the equality of the angles formed by the straight lines with
the x-axis. Hence, the lines are either parallel, or coincide.

If b1 = 0 (which means that a1 6= 0), then it follows from (∗) that b2 = 0.
Thus, both straight lines are parallel to the y-axis and, consequently, they
are either parallel to each other, or coincide.

Let us show that the condition (∗∗) is su�cient for the lines to be mutually
perpendicular.

Suppose b1 6= 0 and b2 6= 0. Then the condition (∗∗) may be rewritten as
follows:

1 +

(
−a1
b1

)(
−a2
b2

)
= 0,

or
1 + k1k2 = 0.

This means that the straight lines form a right angle, i.e. they are mutually
perpendicular.

If then b1 = 0 (hence, a0 6= 0), we get from the condition (∗∗) that a2 = 0.
Thus, the �rst line is parallel to the y-axis, and the second one is parallel to
the x-axis which means that they are perpendicular to each other.

The case when b2 = 0 is considered analogously.
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16.7 Exercises

1. Show that two straight lines intercepting on the coordinate axes seg-
ments of equal lengths are either parallel, or perpendicular to each other.

2. Find the parallelism (perpendicularity) condition of the straight lines
represented by the equations in parametric form:

x = α1t+ a1,

y = β1t+ b1,

}
x = α2t+ a2,

y = β2t+ b2.

}

3. Find the parallelism (perpendicularity) condition for two straight lines
one of which is speci�ed by the equation

ax+ by + c = 0,

the other being represented parametrically:

x = αt+ β, y = γt+ δ.

4. In a family of straight lines given by the equations

a1x+ b1y + c1 + λ(a2x+ b2y + c2) = 0

(λ, parameter of the family) �nd the line parallel (perpendicular) to the
straight line

ax+ by + c = 0.

16.8 Basic problems on the straight line

Let us form the equation of an arbitrary straight line passing through the
point A(x1, y1).

Suppose
ax+ by + c = 0 (∗)

is the equation of the required line. Since the line passes through the point
A, we get

ax1 + by1 + c = 0.

Expressing c and substituting it in the equation (∗), we obtain

a(x− x1) + b(y − y1) = 0.
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It is obvious that, for any a and b, the straight line given by this equation
passes through the point A.

Let us form the equation of the straight line passing through two given
points A1(x1, y1), A2(x2, y2).

Since the straight line passes through the point A1, its equation may be
written in the form

a(x− x1) + b(y − y1) = 0.

Since the line passes through the point A2, we have

a(x2 − x1) + b(y2 − y1) = 0,

whence
a

b
= − y2 − y1

x2 − x1
,

and the required equation will be

x− x1
x2 − x1

− y − y1
y2 − y1

= 0.

Let us now form the equation of a straight line parallel to the line

ax+ by + c = 0,

and passing through the point A(x1, y1).
Whatever the value of λ, the equation

ax+ by + λ = 0

represents a straight line parallel to the given one. Let us choose λ so that
the equation is satis�ed for x = x1 and y = y1:

ax1 + by1 + λ = 0.

Hence
λ = −ax1 − by,

and the required equation will be

a(x− x1) + b(y − y1) = 0.

Let us form the equation of a straight line passing through the given point
A(x1, y1) and perpendicular to the line

ax+ by + c = 0.
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For any λ the straight line

bx− ay + λ = 0

is perpendicular to the given line. Choosing λ so that the equation is satis�ed
for x = x1, y = y1 we �nd the required equation

b(x− x1)− a(y − y1) = 0.

Let us form the equation of a straight line passing through the given point
A(x1, y1) at an angle α to the x-axis.

The equation of the straight line can be written in the form

y = kx+ `.

The coe�cients k and ` are found from the conditions

tanα = k, y1 = kx1 + `.

The required equation is

y − y1 = (x− x1) tanα.

We conclude with the following assertion: the equation of any straight
line passing through the point of intersection of two given straight lines

a1x+ b1y + c1 = 0, a2x+ b2y + c2 = 0,

can be written in the form

λ(a1x+ b1y + c1) + µ(a2x+ b2y + c2) = 0. (∗∗)

Indeed, for any λ and µ which are not both zero, the equation (∗∗) repre-
sents a straight line which passes through the point of intersection of the two
given lines, since its coordinates obviously satisfy the equation (∗∗). Further,
whatever the point (x1, y1) which is di�erent from the point of intersection of
the given straight lines, the line (∗∗) passes through the point (x1, y1) when

λ = a1x1 + b2y2 + c2, −µ = a1x1 + b1y1 + c1.

Consequently, the straight lines represented by (∗∗) exhaust all the lines
passing through the point of intersection of the given straight lines.
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16.9 Exercises

1. Form the equation of a straight line parallel (perpendicular) to the
straight line

ax+ by + c = 0,

passing through the point of intersection of the straight lines

a1x+ b1y + c1 = 0, a2x+ b2y + c2 = 0.

2. Under what condition are the points (x1, y1), (x2, y2) situated sym-
metrically about the straight line

ax+ by + c = 0?

3. Form the equation of a straight line passing through the point (x0, y0)
and equidistant from the points (x1, y1) and (x2, y2).

4. Show that three points (x1, y1), (x2, y2) and (x3, y3) lie on a straight
line if and only if ∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0.



Chapter 17

Vectors

17.1 Addition and subtraction of vectors

In geometry, a vector is understood as a directed line segment (Fig. 17.1).
The direction of a vector is indicated by the arrow. A vector with initial point
A and terminal point B is denoted as

−→
AB. A vector can also be denoted by

a single letter. In printing this letter is given in boldface type (a), in writing
it is given with a bar (a).

Two vectors are considered to be equal if one of them can be obtained
from the other by translation (Fig. 17.1). Obviously, if the vector a is equal
to b is equal to a. If a is equal to b, and b is equal to c, then a is equal to
c.

The vectors are said to be in the same direction (in opposite directions)
If they are parallel, and the terminal points of two vectors equal to them and
reduced to a common origin are found on one side of the origin (on di�erent
sides of the origin).

The length of the line segment depicting a vector is called the absolute
value of the vector.

Figure 17.1: Vector representation

193
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Figure 17.2: Vector addition

A vector of zero length (i.e. whose initial point coincides with the termi-
nus) is termed the zero vector.

Vectors may be added or subtracted geometrically, i.e. we may speak of
addition and subtraction of vectors. Namely, the sum of two vectors a and b
is a third vector a+b which is obtained from the vectors a and b (or vectors
equal to them) in the way shown in Fig. 17.2.

Figure 17.3: Commutativity of vector addition

Vector addition is commutative, i.e. for any vectors a and b (Fig. 17.3).

a + b = b + a.

Vector addition is associative, i.e. if a, b, c are any vectors then

(a + b) + c = a + (b + c).

This property of addition, as also the preceding one, follows directly from
the de�nition of the operation of addition (Fig. 17.4).

Let us mention here that if the vectors a and b are parallel, then the
vector a + b (if it is not equal to zero) is parallel to the vectors a and b,
and is in the same direction with the greater (by absolute value) vector. The
absolute value of the vector a + b is equal to the sum of the absolute values
of the vectors a and b if they are in the same direction, and to the di�erence
of the absolute values if the vectors a and b are in opposite directions.
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Figure 17.4: Associativity of vector addition

Figure 17.5: Vector subtraction

Subtraction of vectors is de�ned as the inverse operation of addition.
Namely, the di�erence of the vectors a and b is de�ned as the vector a− b
which, together with the vector b, yields the vector a. Geometrically it is
obtained from the vectors a and b (or vectors equal to them) as is shown in
Fig. 17.5.

For any vectors a and b we have following inequality

|a + b| ≤ |a|+ |b|

(the triangle inequality), geometrycally expressing the fact that in a triangle
the sum of its two sides is greater than the third side if the vectors are not
parallel. This inequality is obviously valid for any number of vectors:

|a + b + · · ·+ l| ≤ |a|+ |b|+ · · ·+ |l|.

17.2 Exercises

1. Show that the sum of n vectors reduced to a common origin at the
centre of a regular n-gon and with the terminal points at its vertices is equal
to zero.
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2. Three vectors have a common origin O and their terminal points are
at the vertices of the triangle ABC. Show that

−→
OA+

−−→
OB +

−→
OC = 0

if and only if O is the point of intersection of the medians of the triangle.
3. Prove the identity

2|a|2 + 2|b|2 = |a + b|2 + |a− b|2.

To what geometrical fact does it correspond if a and b are non-zero and
non-parallel vectors?

4. Show that the sign of equality in the triangle inequality takes place
only when both vectors are in the same direction, or at least one of the
vectors is equal to zero.

5. If the sum of the vectors r1, . . . , rn reduced to a common origin O is
equal to zero and these vectors are not coplanar, then whatever is the plane
α passing through the point O there can be found vectors ri situated on both
sides of the plane. Show this.

6. The vector rmn lies in the xy-plane; its initial point is (x0, y0) and
the terminus is the point (mδ, nδ), where m and n are whole numbers not
exceeding M and N by absolute value, respectively. Find the sum of all the
vectors rmn expressing it in terms of the vector with the initial point at (0, 0)
and the terminus at the point (x0, y0).

7. A �nite �gure F in the xy-plane has the origin as the centre of sym-
metry. Show that the sum of the vectors with a common origin and termini
at the points whose coordinates are whole numbers of the �gure F is equal
to zero if and only if the origin of coordinates serves as their common ini-
tial point. (It is assumed that the �gure F has at least one point whose
coordinates are whole numbers.)

8. Express the vectors represented by the diagonals of a parallelepiped
in terms of in terms of the vectors represented by its edges.

17.3 Multiplication of a vector by a number

Vectors may also be multiplied by a number. The product of the vector a by
the number λ is de�ned as the vector aλ = λa the absolute value of which
is obtained by multiplying the absolute value of the vector a by the absolute
value of the number λ, i.e. |λa| = |λ| |a|, the direction coinciding with the
direction of the vector a or being in the opposite sense depending on whether
λ > 0 or λ < 0. If λ = 0 or a = 0, then λa is considered to be equal to zero
vector.
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The multiplication of a vector by a number possesses the associative prop-
erty and two distributive properties. Namely, for any number λ, µ and vectors
a, b

λ(µa) = (λµ)a (associative property)

(λ+ µ)a = λa + µa,

λ(a + b) = λa + λb

}
(distributive properties)

Let us prove these properties.
The absolute values of the vectors λ(µa) and (λµ)a are the same and are

equal to |λ| |µ| |a|. The directions of these vectors either coincide, if λ and
µ are of the same sign, or opposite if λ and µ have di�erent signs. Hence,
the vectors λ(µa) and (λµ)a are equal by absolute value and are in he same
direction, consequently, they are equal. If at least one of the numbers λ, µ or
the vector a is equal to zero, then both vectors are equal to zero and, hence,
they are equal to each other. The associative property is thus proved.

We are now going to prove the �rst distributive property:

(λ+ µ)a = λa + µa.

The equality is obvious if at least one of the numbers λ, µ or the vector a is
equal to zero. Therefore, we may consider that λ, µ, and a are non-zero.

If λ and µ are of the same sign, then the vectors λa and µa are in the
same direction. Therefore, the absolute value of the vector λa + µa is equal
to |λa| + |µa| = |λ| |a| + |µ| |a| = (|λ| + |µ|)|a|. The absolute value of the
vector (λ + µ)a is equal to |λ + µ| |a| = (|λ| + |µ|)|a|. Thus, the absolute
values of the vectors (λ + µ)a and λa + µa are equal and they are in the
same direction. Namely, for λ > 0, µ > 0 their directions coincide with the
direction of a, and if λ < 0, µ < 0 they are opposite to a. The case when λ
and µ have di�erent signs is considered in a similar way.

Figure 17.6: Distributive law
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Let us prove the second distributive property:

λ(a + b) = λa + λb.

The property is obvious if one of the vectors or the number λ is equal to
zero. If the vectors a and b are parallel, then b can be represented in the
form b = µa. And the second distributive property follows from the �rst
one. Indeed,

λ(1 + µ)a = λ(a + µa) = λa + λµa.

Hence
λ(a + b) = λa + λb.

Let a and b be non-parallel vectors, then for λ > 0 the vector
−→
AB

(Fig. 17.6) represents, on the one hand, λa+λb, and λ
−→
AC equal to λ(a+b)

on the other. If λ < 0, then both vectors reverse their directions.

17.4 Exercises

1. The vectors r1, r2, . . . are called linearly independent if there exist no
numbers λ1, λ2, . . . , (at least one of which is non-zero) such that

λ1r1 + λ2r2 + · · · = 0

Show that two vectors are linearly independent if and only if they are
non-zero and non-parallel.

Show that three vectors are linearly independent when and only when
they are non-zero and there is no plane parallel to them.

2. Show that any three vectors lying in one plane are always linearly
dependent.

3. Show that if two vectors r1 and r2 in a plane are linearly independent,
then any vector r in this plane is expressed linearly in terms of r1 and r2

r = λ1r1 + λ2r2.

The numbers λ1 and λ2 are de�ned uniquely.
4. Show that if three vectors r1, r2, r3 are linearly independent, then any

vector r is uniquely expressed in terms of these vectors in the form

r = λ1r1 + λ2r2 + λ3r3.
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Figure 17.7: Scalar product

17.5 Scalar product of vectors

The angle between the vectors a and b is de�ned as the angle between the
vectors equal to a and b, respectively, reduced to a common origin (Fig. 17.7).
The scalar product of a vector a by a vector b is de�ned as the number ab
which is equal to the product of the absolute value of the vectors by the
cosine of the angle between them.

The scalar product possesses the following obvious, properties which follow
directly from its de�nition:

(1) ab = ba;

(2) a2 = aa = |a|2;

(3) (λa)b = λ(ab);

(4) if |e| = 1, then (λe)(µe) = λµ;

(5) the scalar product of vectors a and b is equal to zero if and only if the
vectors are mutually perpendicular or one of them is equal to zero.

The projection of a vector a on a straight line is de�ned as the vector a
whose initial points is the projection of the initial point of the vector a and
whose terminal point is the projection of the terminal point of the vector a.

Obviously, equal vectors have equal projections, the projection of the sum
of vectors is equal to the sum of the projections (Fig. 17.8).

The scalar product of a vector a by a vector b is equal to the scalar
product of the projection of the vector a onto the straight line containing
the vector b by the vector b. The proof is obvious. It is su�cient to note
that ab and ab are equal by absolute value and have the same sign.

The scalar product possesses the distributive property. Namely for any
three vectors a, b, c

(a + b)c = ac + bc.
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Figure 17.8: Projection of vectors

The statement is obvious if one of the vectors is equal to zero. Let all the
vectors be non-zero. Denoting by a, b, a + b the projections of the vectors
a, b, and a + b onto the line containing the vector c, we have

(a + b)c = (a + b)c = (a + b)c,

ac + bc = ac + bc.

Let e be a unit vector parallel to c. Then a, b, and c allow the represen-
tations a = λe, b = µe, c = νe. We obtain

(a + b)c = (λe + µe)νe = (λ+ µ)ν,

ac + bc = λeνe + µeνe = λν + µν.

Whence

(a + b)c = ac + bc

and, hence

(a + b)c = ac + bc.

In conclusion we are going to show that if a, b, c are non-zero vectors
which are not parallel to one plane, then from the equalities

ra = 0, rb = 0, rc = 0

if follows that r = 0.
Indeed, if r 6= 0, then from the above three equalities it follows that the

vectors a, b, c are perpendicular to r, and therefore parallel to the plane
perpendicular to r which is impossible.
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Figure 17.9: Vector product of two vectors

17.6 Exercises

1. Let A1, A2, . . . , An be the vertices of a regular n-gon. Then
−−−→
A1A2 +−−−→

A2A3 + · · ·+
−−−→
AnA1 = 0. Drive from this that

1 + cos
2π

n
+ cos

4π

n
+ · · ·+ cos

(2n− 2)π

n
= 0,

sin
2π

n
+ sin

4π

n
+ · · ·+ sin

(2n− 2)π

n
= 0.

2. Show that if a and b are non-zero and non-parallel vectors, then
λ2a2 + 2µλ(ab) + µ2b2 ≥ 0, the equality to zero taking place only if λ = 0,
and µ = 0.

17.7 The vector product of vectors

The vector product of a vector a by a vector b is a third vector a×b de�ned
in the following way. If at least one of the vectors a, b is equal to zero or
the vectors are parallel, then a × b = 0. in other cases this vector (by its
absolute value) is equal to the area of the parallelogram constructed on the
vectors a and b as sides and is directed perpendicular to the plane containing
this parallelogram so that the rotation in the direction from a to b and the
direction of a× b form a �right-hand screw" (Fig. 17.9).

From the de�nition of the vector product it directly follows:

(1) a× b = −b× a,

(2) |a×b| = |a| |b| sin θ, where θ is the angle formed by the vectors a and b;
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Figure 17.10: Projection on a plane

Figure 17.11: Projection on perpendicular plane

(3) (λa)× b = λ(a× b).

The projection of a vector a on a plane is de�ned as the vector a′ whose
initial point is the projection of the initial point of the vector a and whose
terminal point is the projection of the terminal point of the vector a. Obvi-
ously, equal vectors have equal projections and the projection of the sum of
vectors is equal to the sum of the projections (Fig. 17.10).

Suppose we have two vectors a and b. Let a′ denote the projection of the
vector a on the plane perpendicular to the vector b (Fig. 17.11). Then

a× b = a′ × b.

The proof is obvious. It is su�cient to mention that the vectors a × b
and a′ × b have equal absolute values and are in the same direction.

The vector product possesses a distributive property, i.e. for any there
vectors a, b, c

(a + b)× c = a× c + b× c. (∗)
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Figure 17.12: Distributive law of vector product

The assertion is obvious if c = 0. It is then obvious that the equality (∗)
is su�cient to the for the case |c| = 1, since in the general case it will then
follow the above mentioned property (3).

So, let |c| = 1, and let a′ and b′ denote the projections of the vectors
a and b on the plane perpendicular to the vector c (Fig. 17.12). Then the
vectors a′×c, b′×c and (a′+b′)×c are obtained from the vectors a′, b′, and
a′ + b′, respectively, by a rotating through an angle of 90◦. Consequently,

(a′ + b′)× c = a′ × c + b′ × c.

And since

a′ × c = a× c, b′ × c = b× c,

(a′ + b′)× c = (a + b)× c,

we get
(a + b)× c = a× c + b× c,

which was required to be proved.
Let us mention the following simple identity which is true for any vectors

a and b:
(a× b)2 = a2b2 − (ab)2.

Indeed, if θ is the angle between the vectors a and b, then this indentity
expresses that

(|a| |b| sin θ)2 = |a|2|b|2 − (|a| |b| cos θ)2

and, consequently, is obvious.
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17.8 Exercises

1. If the vectors a and b are perpendicular to the vector c, then

(a× b)× c = 0.

Show this.
2. If the vector b is perpendicular to c, and the vector a is parallel to

the vector c, then
(a× b)× c = b(ac).

Show this.
3. For an arbitrary vector a and a vector b perpendicular to c

(a× b)× c = b(ac).

Show this.
4. Show that for any three vectors a, b, c

(a× b)× c = b(ac)− a(bc).

5. Find the area of the base of a triangular pyramid whose lateral edges
are equal to l, the vertex angles being equal to α, β, γ.

17.9 The triple product of vectors

The triple (scalar) product of vectors a, b, c is the number

(abc) = (a× b)c. (∗)

Obviously, the triple product is equal to zero if and only if one of the
vectors is equal to zero or all three vectors are parallel to one plane.

The numerical value of the triple product of non-zero vectors a, b, c which
are not parallel to one plane is equal to the volume of the parallelepiped of
which the vectors a, b, c are coterminal sides (Fig. 17.13).

Indeed, a× b = Se, where S is the are of the base of the parallelepiped
constructed on the vectors a, b, and e is the unit vector perpendicular to the
base. Further, ec is equal up to a single to the altitude of the parallelepiped
dropped onto the mentioned base. Consequently, up to a sign, (abc) is equal
to the volume of the parallelepiped constructed on the vectors a, b, and c.
The triple product possesses the following property

(abc) = a(b× c). (∗∗)
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Figure 17.13: Meaning of triple product

It is su�cient to note that the right-hand and the left-hand members are
equal by absolute value and have the same sign. From the de�nition (∗) of
the triple product and the property (∗∗) it follows that an interchange of any
two factors reverses the sign of the triple product. In particular, the triple
product is equal to zero if two factors are equal to each other.

17.10 Exercises

1. Noting that

((a× b)× c)d = (a× b)(c× d),

derive the identity

(a× b)(c× d) =

∣∣∣∣ac ad
bc bd

∣∣∣∣ .
2. With the aid of the identity

(a× b)(c× b) = (ac)b2 − (ab)(bc)

derive the formula of spherical trigonometry where α, β, γ are the sides of
a triangle on the unit sphere, and B is the angle of this triangle opposite to
the side β.

3. Derive the identity

(a× b)(c× d) = b(acd)− a(bcd).
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Chapter 18

Rectangular Cartesian

Coordinates in Space

18.1 Cartesian coordinates

Let us draw from an arbitrary point O in space three straight lines Ox, Oy,
Oz not lying in one plane, and lay o� on each of them from the point O three
non-zero vectors ex, ey, ez (Fig. 18.1). According to Section 17.6, any vector
−→
OA allows a unique representation of the form

−→
OA = xex + yey + zez.

The numbers x, y z are called the Cartesian coordinates of a point A.
The straight lines Ox, Oy, Oz are termed the coordinate axes : Ox is the

x-axis, Oy is the y-axis, and Oz is the z-axis. The planes Oxy, Oyz, Oxz
are called the coordinate planes : Oxy is the xy-plane, Oyz is the yz-plane,
and Oxz is the xz-plane.

Figure 18.1: Coordinate axes in space
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Figure 18.2: Coordinates in space

Each of the coordinate axes is divided by the point O (i.e. by the origin
of coordinates) into two semi-axes. Those of the semi-axes whose directions
coincide with the directions of the vectors ex, ey, ez are said to be positive,
the others being negative. The coordinate system thus obtained is called
right-handed if (exeyez) > 0, and left-handed if (exeyez) < 0.

Geometrically the coordinates of the point A are obtained in the following
way. We draw through the point A a plane parallel to the yz-plane. It
intersects the x-axis at a point Ax (Fig. 18.2). Then the absolute value of
the coordinate x of the point A is equal to the length of the line segment
OAx as measured by the unit length |ex|.

It is positive if Ax belongs to the positive semi-axis x, and is negative if
Ax belongs to the negative semi-axis x. To make sure of this is su�cient to
recall how the coordinates of the vector

−→
OA relative to the basis ex, ey, ez are

determined. The other two coordinates of the point (y and z) are determined
by a similar construction.

If the coordinate axes are mutually perpendicular, and ex, ey, ez are
the unit vectors, then the coordinates are called the rectangular Cartesian
coordinates.

Cartesian coordinates on the plane are introduced in a similar way. Namely,
we draw from the point O (i.e. from the origin of coordinates) two arbitrary
straight lines Ox and Oy (the coordinate axes) and lay o� on each axis (from
the point O) a non-zero vector. Thus we obtain the vectors ex and ey. The
Cartesian coordinates of an arbitrary point A are then determined as the
coordinates of the vector

−→
OA relative to the basis ex, ey.

Obviously, if the coordinate axes are mutually perpendicular, and ex,
ey are unit vectors, then the coordinates de�ned in this way coincide with
those introduced in Section 15.1 and are called the rectangular Cartesian
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coordinates.
Below, as a rule, we shall use the rectangular Cartesian coordinates. If

otherwise, each case will be supplied with a special mention.

18.2 Exercises

1. Where are the points in space located if: (a) x = 0; (b) y = 0; (c)
z = 0; (d) x = 0, y = 0; (e) y = 0, z = 0; (f) z = 0, x = 0?

2. How many points in space satisfy the following conditions

|x| = a, |y| = b, |z| = c, if abc 6= 0?

3. Where are the points in space situated if

|x| < a, |y| < b, |z| < c?

4. Let A be a vertex of a parallelepiped, A1, A2, A3 the vertices adjacent
to A, i.e. the end-points of the edges emanating from A. Find the coordinates
of all the vertices of the parallelepiped, taking the vertex A for the origin and
the vertices A1, A2, A3 for the end-points of the basis vectors.

5. Find the coordinates of the point into which the point (x, y, z) goes
when rotated about the straight line joining the point A0(a, b, c) to the origin
through an angle of α = π/2. The coordinate system is rectangular.

6. Solve Exercises 5 for an arbitrary α.

18.3 Elementary problems of solid analytic ge-

ometry

Let there be introduced in space Cartesian coordinates xyz and letA1(x1, y1, z1)
and A2(x2, y2, z2) be two arbitrary points is pace. Find the coordinates of the
point A which divides the line segment A1A2 in the ratio λ1 : λ2 (Fig. 18.3).

The vectors
−−→
A1A and

−−→
AA2 are in the same direction, and their absolute

values are as λ1 : λ2. Consequently,

λ2
−−→
A1A− λ1

−−→
AA2 = 0,

or
λ2(
−→
OA−

−−→
OA1)− λ2(

−−→
OA2 −

−→
OA) = 0.
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Figure 18.3: Division of a segment in space

Whence
−→
OA =

λ2
−−→
OA1 + λ1

−−→
OA2

λ1 + λ2
.

Since the coordinates of the points A(x, y, z) are the same as the coordi-
nates of the vector

−→
OA, we have

x =
λ2x1 + λ1x2
λ1 + λ2

,

y =
λ2y1 + λ1y2
λ1 + λ2

,

z =
λ2z1 + λ1z2
λ1 + λ2

.

Let the coordinate system be rectangular. Express the distance between
the points A1 and A2 in terms of their coordinates.

The distance between the points A1 and A2 is equal to the absolute value
of the vector

−−−→
A1A2 (Fig. 18.4). We have

−−−→
A1A2 =

−−→
OA2 −

−−→
OA1 = ex(x2 − x1) + ey(y2 − y1) + ez(z2 − z1).

Whence
(A1A2)

2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
Express the area of a triangle in the xy-plane in terms of the coordinates

of its vertices: A1(x1, y1, 0), A2(x2, y2, 0), and A3(x3, y3, 0).
The absolute value of the vector

−−−→
A1A2 ×

−−−→
A1A3 is equal to twice the area

of the triangle A1A2A3;

−−−→
A1A2 ×

−−−→
A1A3 = ez

∣∣∣∣x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣ .
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Figure 18.4: The distance of two points

Consequently, the area of the triangle

S =
1

2

∣∣∣∣x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣ .
Express the volume of a tetrahedron A1A2A3A4 in terms of the coordinates

of its vertices.

The triple scalar product of the vectors
−−−→
A1A2,

−−−→
A1A3,

−−−→
A1A4 is equal (up to

a sign) to the volume of the parallelepiped constructed on these vectors and,
consequently, to six times the volume of the tetrahedron A1A2A3A4. Hence

V =
1

6

∣∣∣∣∣∣
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1
x4 − x1 y4 − y1 z4 − z1

∣∣∣∣∣∣ .
18.4 Exercises

1. Find the distance between two points expressed in terms of Cartesian
coordinates if the positive semi-axes form pairwise the angles α, β, γ, and
ex, ey, ez are unit vectors.

2. Find the centre of a sphere circumsribed about a tetrahedron with the
vertices (a, 0, 0), (0, b, 0), (0, 0, c), (0, 0, 0).

3. Prove that the straight lines joining the mid-points of the opposite
edges of a tetrahedron intersect at one point. Express the coordinates of this
ponint in terms of the coordinates of the vertices of the tetrahedron.

4. Prove that the straight lines joining the vertices of a tetrahedron to
the centroids of the opposite faces intersect at point. Express its coordinates
in terms of the coordinates of the vertices of the tetrahedron.
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18.5 Equations of a surface and a curve in space

Suppose we have a surface.
The equation

f(x, y, z) = 0 (∗)

is called the equation of a surface in implicit form if the coordinates of any
point of the surface satisfy this equation. And conversely, any three numbers
x, y, z satisfying the equation (∗) represent the coordinates of one of the
points of the surface.

The system of equations

x = f1(u, v), y = f2(u, v), z = f3(u, v), (∗∗)

specifying the coordinates of the points of the surfaces as a function of two
parameters (u, v) is called the parametric equation of a surface.

Eliminating the parameters u, v from the system (∗∗), we can obtain the
implicit equation of a surface.

Form the equation of an arbitrary sphere in the rectangular Cartesian
coordinates xyz.

Let (x0, y0, z0) be the centre of the sphere, and R its radius. Each point
(x, y, z) of the sphere is located at a distance R from the centre, and, conse-
quently, satis�es the equation

(x− x0)2 + (y − y0)2 + (z − z0)2 −R2 = 0. (∗ ∗ ∗)

Conversely, any point (x, y, z) satisfying the equation (∗∗∗) is found at a dis-
tance R from (x0, y0, z0) and, consequently, belong to the sphere. According
to the de�nition, the equation (∗ ∗ ∗) is the equation of a sphere.

Form the equation of a circular cylinder with the axis Oz and radius R
(Fig. 18.5). Let us take the coordinate z(v) and the angle (u) formed by the
plane passing through the z-axis and the point (x, y, z) with the xz-plane as
the parameters u, v, characterizing the position of the point (x, y, z) on the
cylinder. We then get

x = R cosu, y = R sinu, z = v,

which is the required equation of the cylinder in parametric form.
Squaring the �rst two equations and adding termwise, we get the equation

of the cylinder in implicit form:

x2 + y2 = R2.
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Figure 18.5: Exercise 3

Suppose we have a curve in space. The system of equations

f1(x, y, z) = 0, f2(x, y, z) = 0

is called the equation of a curve in implicit form if the coordinates of each
point of the curve satisfy both equations. And conversely, any three numbers
satisfying both equations represent the coordinates of some point on the
curve.

A system of equations

x = ϕ1(t), y = ϕ2(t), z = ϕ3(t),

specifying the coordinates of points of the curve as a function of some pa-
rameter (t) is termed the equation of a curve in parametric form.

Two surfaces intersect, as a rule, along a curve. Obviously, if the surfaces
are speci�ed by equations f1(x, y, z) = 0 and f2(x, y, z) = 0, then the curve
along which they intersect is represented by a system of equations

f1(x, y, z) = 0, f2(x, y, z) = 0.

Form the equation of an arbitrary circle is space. Any circle can be rep-
resented as an intersection of two spheres. Consequently, any circle can be
speci�ed by a system of equations

(x− a1)2 + (y − b1)2 + (z − c1)2 −R2
1 = 0,

(x− a2)2 + (y − b2)2 + (z − c2)2 −R2
2 = 0.

}
As a rule, a curve and a surface intersect at separate points. If the surface

is speci�ed by the equation f(x, y, z) = 0, and the curve by the equations
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f1(x, y, z) = 0 and f2(x, y, z) = 0, then the points of intersection of the curve
and the surface satisfy the following system of equations:

f(x, y, z) = 0, f1 = (x, y, z) = 0, f2(x, y, z) = 0.

Solving this system, we �nd the coordinates of the points of intersection.



Chapter 19

A Plane and a Straight Line

19.1 The equation of a plane

Form the equation of an arbitrary plane in the rectangular Cartesian coordi-
nates xyz.

Let A0(x0, y0, z0) be a point in a plane and n a nonzero vector perpen-
dicular to the plane. Then whatever the point of the plane A(x, y, z) is, the
vectors

−−→
A0A and n are mutually perpendicular (Fig. 19.1). Hence,

−−→
A0A · n = 0. (∗)

Let a, b, c be the coordinates of the vector n with respect to the basis ex
ey, ez.

Then, since
−−→
A0A =

−→
OA−

−−→
OA0, it follows from (∗)

a(x− x0) + b(y − y0) + c(z − z0) = 0. (∗∗)

Figure 19.1: Equation of a plane
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This is the required equation.
Thus, the equation of any plane is linear relative to the coordinates x,

y, z.
Since the formulas for transition from one Cartesian system of coordinates

to another are linear, we may state that the equation of a plane is linear in
any Cartesian system of coordinates (but not only in a rectangular one).

Let us now show that any equation of the form

ax+ by + cz + d = 0

is the equation of a plane.
Let x0, y0, z0 be a solution of the given equation. Then

ax0 + by0 + cz0 + d = 0

and the equation may be rewritten in the from

a(x− x0) + b(y − y0) + c(z − z0) = 0. (∗ ∗ ∗)

Let n be a vector with the coordinates a, b, c with respect to the basis
ex, ey, ez, A0 a point with the coordinates x0, y0, z0 and A a point with the
coordinates x, y, z. Then the equation (∗∗∗) can be written in the equivalent
form −−→

A0A · n = 0.

Whence it follows that all points of the plane passing through the point A0

and perpendicular to the vector n (and only they) satisfy the given equation
and, consequently, it is the equation of this plane.

Let us note that the coe�cients of x, y, z in the equation of the plane are
the coordinates of the vector perpendicular to the plane relative to the basis
ex ey, ez.

19.2 Exercises

1. Form the equation of a plane given two points (x1, y1, z1) and (x2, y2, z2)
situated symmetrically about it.

2. Show that the planes

ax+ by + cz + d1 = 0,

ax+ by + cz + d2 = 0, d1 6= d2,
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are parallel (do not intersect).
3. What is the locus of points whose coordinates satisfy the equation

(ax+ by + cz + d)2 − (αx+ βy + γz + δ)2 = 0?

4. Show that the curve represented by the equations

f(x, y, z) + a1x+ b1y + c1z + d1 = 0,

f(x, y, z) + a2x+ b2y + c2z + d1 = 0,

is a plane one, i.e. all points of this curve belong to a plane.
5. Show that the three planes speci�ed by the equations

ax+ by + cz + d = 0,

αx+ βy + γz + d = 0,

λ(ax+ by + cz) + µ(alphax+ βy + γz) + k = 0,

have no points in common if k 6= λd+ µδ.
6. Write the equation of the plane passing through the circle of intersec-

tion of the two spheres

x2 + y2 + z2 + ax+ by + cz + d = 0,

x2 + y2 + z2 + αx+ βy + γz + δ = 0.

7. Show that inversion transforms a sphere either into a sphere or into a
plane.

8. Show that the equation of any plane passing through the line of inter-
section of the planes

ax+ by + cz + d = 0,

αx+ βy + γz + δ = 0,

can be represented in the from

λ(ax+ by + cz + d) + µ(αx+ βy + γz + δ) = 0.

9. Show that the plane passing through the three given points (xi, yi, zi)
(i = 1, 2, 3) is speci�ed by the equation∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣ = 0.
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19.3 Special positions of a plane relative to co-

ordinate system

Let us �nd out the peculiarities of the of the position of a plane relative
to coordinate system which take place when its equation is of this or that
particular form.

1. a = 0, b = 0. Vector n (perpendicular to the plane) is parallel to the
z-axis. The plane is parallel to the xy-plane. In particular, it coincides
with the xy-plane if d is also zero.

2. b = 0, c = 0. The plane is parallel to the yz-plane and coincides with
it if d = 0.

3. c = 0, a = 0. The plane is parallel to the xz-plane and coincides with
it if d = 0.

4. a = 0, b 6= 0, c 6= 0. Vector n is perpendicular to the x-axis: exn = 0.
The plane is parallel to the x-axis, in particular, it passes through it if
d = 0.

5. a 6= 0, b = 0, c 6= 0. The plane is parallel to the y-axis and passes
through it if d = 0.

6. a 6= 0, b 6= 0, c = 0. The plane is parallel to the z-axis and passes
through it if d = 0.

7. d = 0. The plane passes through the origin (whose coordinates 0, 0, 0
satisfy the equation of the plane).

If all the coe�cients are non-zero, then the equation may be divided by
−d. Then, putting

−d
a

= α, −d
b

= β, −d
c

= γ,

we get the equation of the plane the following form:

x

α
+
y

β
+
z

γ
= 1. (∗)

The numbers α, β, γ are equal (up to a sign) to the segments intercepted
by the plane on the coordinate axes. Indeed, the x-axis (y = 0, z = 0) is
intersected by the plane at point (α, 0, 0), the y-axis at point (0, β, 0), and
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the z-axis at point (0, 0, γ). The equation (∗) is called the intercept form of
the equation of a plane.

We conclude with a note that any plane not perpendicular to the xy-plane
(c 6= 0) may be speci�ed by an equation of the form

z = px+ qy + l.

19.4 Exercises

1. Find the conditions under which the plane

ax+ by + cz + d = 0

intersects the positive semi-axis x(y, z).
2. Find the volume of the tetrahedron bounded by the coordinate planes

and the plane
ax+ by + cz + d = 0

if abcd 6= 0.
3. Prove that the points in space for which

|x|+ |y|+ |z| < a,

are situated inside an octahedron with centre at the origin and the on the
vertices coordinate axes.

4. Given a plane σ by the equation in rectangular Cartesian coordinates

ax+ by + cz + d = 0.

Form the equation of the plane σ′ symmetrical to σ about the xy-plane
(about the origin O).

5. Given a family of planes depending on a parameter

ax+ by + cz + d+ λ(αx+ βy + γz + δ) = 0.

Find in this family a plane parallel to the z-axis.
7. In the family of planes

(a1x+ b1y + c1z + d1) + λ(a2x+ b2y + c2z + d2)

+ µ(a3x+ b3y + c3z + d3) = 0

�nd the plane parallel to the xy-plane. The parameters of the family are λ
and µ.
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19.5 The normal form of the equation of a plane

If a point A(x, y, z) belongs to the plane

ax+ by + cz + d = 0, (∗)

then its coordinates satisfy the equation (∗).
Let us �nd out what geometrical meaning has the expression

ax+ by + cz + d

if the point A does not belong to the plane.
We drop from the pointA a perpendicular onto the plane. LetA0(x0, y0, z0)

be the foot of the perpendicular. Since the point A0 lies on the plane, then

ax0 + by0 + cz0 + d = 0.

Whence

ax+ by + cz + d = a(x− x0) + b(y − y0) + c(z − z0) = n ·
−−→
A0A = ±|n|δ,

where n is a vector perpendicular to the plane, with the coordinates a, b, c,
and δ is the distance of the point A form the plane.

Thus
ax+ by + cz + d

is positive on one side of the plane, and negative on the other, its absolute
value being proportional to the distance of the point A from the plane. The
proportionality factor

±|n| =
√
a2 + b2 + c2.

If in the equation of the plane

a2 + b2 + c2 = 1,

then
ax+ by + cz + d,

will be equal up to a sign to the distance of the point from the plane. In this
case the plane is said to be speci�ed by an equation in the normal form.

Obviously, to obtain the normal form of the equation of a plane (∗), it is
su�cient to divide it by

±
√
a2 + b2 + c2.
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19.6 Exercises

1. The planes speci�ed by the equations in rectangular Cartesian coor-
dinates

ax+ by + cz + d = 0,

ax+ by + cz + d′ = 0

where d 6= d′, have no points in common, hence, they are parallel. Find the
distance between these planes.

2. The plane
ax+ by + cz + d = 0

is parallel to z-axis. Find the distance of the z-axis from this plane.
3. What is the locus of points whose distance to two given planes are in

a given ratio?
4. Form the equations of the planes parallel to the plane

ax+ by + cz + d = 0

and located at a distance δ from it.
5. Show that the points in space satisfying the condition

|ax+ by + cz + d| < δ2,

are situated between the parallel planes

ax+ by + cz + d± δ2 = 0.

6. Given are the equations of the planes containing the faces of a tetra-
hedron and a point M by its coordinates. How to �nd out whether or not
the point M lies inside the tetrahedron?

7. Derive the formulas for transition to a new system of rectangular
Cartesian coordinates x′y′z′ if the new coordinate plane are speci�ed in the
old system by the equations

a1x+ b1y + c1z + d1 = 0,

a2x+ b2y + c2z + d2 = 0,

a3x+ b3y + c3z + d3 = 0.



222 CHAPTER 19. A PLANE AND A STRAIGHT LINE

19.7 Relative position of planes

Suppose we two planes

a1x+ b1y + c1z + d1 = 0,

a2x+ b2y + c2z + d2 = 0.

}
(∗)

Find out under which condition these planes are: (a) parallel, (b)mutually
perpendicular.

Since a1, b1, c1 are the coordinates of vector n1 perpendicular to the �rst
plane, and a2, b2, c2 are the coordinates of vector n2 which is perpendicular
to the second plane, the planes are parallel if the vectors n1, n2 are parallel,
i.e. if their coordinates are proportional:

a1
a2

=
b1
b2

=
c1
c2
.

Moreover, this condition is su�cient for parallelism of the planes if they are
not coincident.

For the planes (∗) to be mutually perpendicular it is necessary and suf-
�cient that the mentioned vectors n1 and n2 are mutually perpendicular,
which for non-zero vectors is equivalent to the condition

n1n2 = 0 or a1a2 + b1b2 + c1c2 = 0.

Let the equations (∗) specify two arbitrary planes. Find the angle made
by these planes.

The angle θ between the vectors n1 and n2 is equal to one the angles
formed by planes and is readily found. We have

n1 · n2 = |n1| |n2| cos θ.

Whence

cos θ =
a1a2 + b1b2 + c1c2√

a21 + b21 + c21
√
a22 + b22 + c22

.

19.8 Equations of the straight line

Any straight line can be speci�ed as an intersection of two planes. Conse-
quently, any straight line can be speci�ed by the equations

a1x+ b1y + c1z + d1 = 0,

a2x+ b2y + c2z + d2 = 0.

}
(∗)
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Figure 19.2: Equations of a line i space

the �rst which represents one plane and the second the other. Conversely, any
compatible system of two such independent equations represents the equations
of a straight line.

Let A0(x0, y0, z0) be �xed point on a straight line, A(x, y, z) an arbi-
trary point of the straight line, and e(k, l,m) a non-zero vector parallel to
the straight line (Fig. 19.2). Then the vectors

−−→
A0A and e are parallel and,

consequently, their coordinates are proportional, i.e.

x− x0
k

=
y − y0
l

=
z − z0
m

. (∗∗)

This form of the equation of a straight line is called canonical. It repre-
sents a particular case (∗), since it allows an equivalent form

x− x0
k

=
y − y0
l

,
y − y0
l

=
z − z0
m

,

corresponding to (∗).
Suppose a straight line is represented by the equations (∗). Let us form

its equation in canonical form. For this purpose it is su�cient to �nd a point
A0 on the straight line and a vector e parallel to this line.

Any vector e(k, l,m) parallel to the straight line will be parallel to either
of the planes (∗), and conversely. Consequently, k, l, m satisfy the equations

a1k + b1l + c1m = 0,

a2k + b2l + c2m = 0.

}
(∗ ∗ ∗)

Thus, any solution of the system (∗) may be taken as x0, y0, z0 for the
canonical equation of the straight line and any solution of (∗ ∗ ∗) as the
coe�cients k, l, m, for instance

k =

∣∣∣∣b1 c1
b2 c2

∣∣∣∣ , l =

∣∣∣∣c1 a1
c2 a2

∣∣∣∣ , m =

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ .
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From the equation of a straight line in canonical form we can derive its
equations in parametric form. Namely, putting the common value of the
three ratios of the canonical equation equal to t, we get

x = kt+ x0, y = lt+ y0, z = mt+ z0

which are the parametric equations of a straight line.
Let us �nd out what are the peculiarities of the position of a straight line

relative to the coordinate system if some of the coe�cients of the canonical
equation are equal to zero.

Since the vector e(k, l,m) is parallel to the straight line, with m = 0 the
line is parallel to the xy-plane (eex = 0), with l = 0 the line is parallel to
the xz-plane, and with k = 0 it is parallel to the yz-plane.

If k = 0 and l = 0, then the straight line is parallel to the z-axis (e is
parallel to ez; if l = 0 and m = 0, then it is parallel to the x-axis, and if
k = 0 and m = 0, then the line is parallel to the y-axis.

We conclude with a note that a straight line may be speci�ed by the
equations of the form (∗) and (∗∗) in Cartesian coordinates in general (and
not only in its particular case, i.e. in rectangular Cartesian coordinates).

19.9 Exercises

1. Under what condition does a straight line represented by the equation
in canonical form (∗∗) intersect the x-axis (y-axis, z-axis)? Under what
condition is it parallel to the plane xy(yz, zx)?

2. Show that the locus of points equidistant from three pairwise non-
parallel planes is a straight line.

3. Show that the locus of points equidistant from the vertices of a triangle
is a straight line. Form its equations given the coordinates of the vertices of
the triangle.

4. Show that through each point of the surface

z = axy

there pass two straight lines entirely lying on the surface.
5. If the straight lines speci�ed by the equations

a1x+ b1y + c1z + d1 = 0,

a2x+ b2y + c2z + d2 = 0.

}
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and
a3x+ b3y + c3z + d3 = 0,

a4x+ b4y + c4z + d4 = 0.

}
intersect, then ∣∣∣∣∣∣∣∣

a1 b1 c1 d1
a2 b2 c2 d2
a2 b2 c2 d2
a4 b4 c4 d4

∣∣∣∣∣∣∣∣ = 0.

Show this.

19.10 Basic problems of straight lines and planes

Form the equation of an arbitrary plane passing through the point (x0, y0, z0).
Any plane is speci�ed by an equation of the form

ax+ by + cz + d = 0.

Since the point (x0, y0, z0) belongs to the plane, then

a0x+ b0y + c0z + d0 = 0.

Hence the equation of the required plane is

ax+ by + cz − (a0x+ b0y + c0z) = 0,

or
a(x− x0) + b(y − y0) + c(z − z0) = 0.

Obviously, for any a, b, c this equation is satis�ed by the point (x0, y0, z0).
Form the equation of an arbitrary straight line passing through the point

(x0, y0, z0).
The required equation is

x− x0
k

=
y − y0
l

=
z − z0
m

.

Indeed, this equation speci�es a straight line passing through the point
(x0, y0, z0) whose coordinates obviously satisfy the equation. Taking arbitrary
(not all equal to zero) values for k, l, m, we obtain a straight line of an
arbitrary direction.

Form the equation of a straight line passing through two given points
(x′, y′, z′) and (x′′, y′′, z′′).
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The equation of the straight line may be written in the form

x− x′

k
=
y − y′

l
=
z − z′

m
.

Since the second points lies on the line, then

x′′ − x′

k
=
y′′ − y′

l
=
z′′ − z′

m
.

This allows us to eliminate k, l, m, and we get the equation

x− x′

x′′ − x′
=

y − y′

y′′ − y′
=

z − z′

z′′ − z′
.

Form the equation of a plane passing through three points A′(x′, y′, z′),
A′′(x′′, y′′, z′′), A′′′(x′′′, y′′′, z′′′), not lying on a straight line.

Let A(x, y, z) be an arbitrary point belonging to the required plane. The
three vectors −−→

A′A,
−−−→
A′A′′,

−−−→
A′A′′′

lie in one plane. Consequently,

(
−−→
A′A,

−−−→
A′A′′,

−−−→
A′A′′′) = 0,

and we get the required equation∣∣∣∣∣∣
x− x′ y − y′ z − z′
x′′ − x′ y′′ − y′ z′′ − z′
x′′′ − x′ y′′′ − y′ z′′′ − z′

∣∣∣∣∣∣ = 0.

Form the equation of a plane passing through a given point (x0, y0, z0) and
parallel to the plane

ax+ by + cz + d = 0.

The required equation is

a(x− x0) + b(y − y0) + c(z − z0) = 0.

Indeed, this plane passes through the given point and is parallel to the given
plane.

Form the equation of a straight line passing through a given point (x0, y0, z0)
parallel to a given straight line

x− x′

k
=
y − y′

l
=
z − z′

m
.
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The required equation is

x− x0
k

=
y − y0
l

=
z − z0
m

.

A straight line passing through a point (x0, y0, z0) and perpendicular to a
plane

ax+ by + cz + d = 0,

is speci�ed by the equation

x− x0
a

=
y − y0
l

=
z − z0
c

.

A plane perpendicular to a straight line

x− x′

k
=
y − y′

l
=
z − z′

m
,

passing through a point (x0, y0, z0), is speci�ed by the equation

k(x− x0) + l(y − y0) +m(z − z0) = 0.

let us form the equation of a plane passing through a point (x0, y0, z0) and
parallel to the straight lines

x− x′

k′
=
y − y′

l′
=
z − z′

m′
,

x− x′′

k′′
=
y − y′′

l′′
=
z − z′′

m′′
.

Since the vector (k′, l′,m′), and (k′′, l′′,m′′) are parallel to the plane, their
vector product is perpendicular to the plane. Hence the equation is

(x− x0)
∣∣∣∣ l′ m′

l′′ m′′

∣∣∣∣+ (y − y0)
∣∣∣∣m′ k′

m′′ k′′

∣∣∣∣+ (z − z0)
∣∣∣∣k′ l′

k′′ l′′

∣∣∣∣ = 0,

which can be rewritten in a compact form:∣∣∣∣∣∣
x− x0 y − y0 z − z0
k′ l′ m′

k′′ l′′ m′′

∣∣∣∣∣∣ = 0.
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